Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):o1663–o1664. doi: 10.1107/S1600536810022105

Polythia­zide

Thomas Gelbrich a,*, Mairi F Haddow a,, Ulrich J Griesser a
PMCID: PMC3006947  PMID: 21587890

Abstract

The crystal structure of the title compound, C11H13ClF3N3O4S3 (systematic name: 6-chloro-2-methyl-3-{[(2,2,2-trifluoro­eth­yl)sulfan­yl]meth­yl}-3,4-dihydro-2H-1,2,4-benzothia­diazine-7-sul­f­on­amide 1,1-diox­ide; CRN: 346–18–9), exhibits a two-dimensional network of hydrogen-bonded mol­ecules parallel to (Inline graphic01). The NH and NH2 groups act as donor sites and the sulfonyl O atoms as acceptor sites in N—H⋯O hydrogen bonds, and a C—H⋯O interaction also occurs. The thiadiazine ring adopts an envelope conformation with the N atom bonded to sulfur at the tip of the flap, and the methyl substituent is in an axial position.

Related literature

For the preparation of polythia­zide, see: McManus (1961). For a comprehensive description of polythia­zide, see: Negendra Vara et al. (1991). For a preliminary crystallographic study at room temperature, see Dupont & Dideberg (1970). For crystal structures of polymorphs and solvates of related thia­zide compounds, see: Zhou et al. (2006); Johnston et al. (2007a ,b ); Johnston et al. (2007); Fernandes, Florence et al. (2006); Fernandes, Shankland et al. (2007); Johnston et al. (2008); Fabbiani et al. (2007); Fernandes, Johnston et al. (2007); Fernandes, Leech et al. (2007).graphic file with name e-66-o1663-scheme1.jpg

Experimental

Crystal data

  • C11H13ClF3N3O4S3

  • M r = 439.87

  • Monoclinic, Inline graphic

  • a = 14.6659 (7) Å

  • b = 9.5498 (6) Å

  • c = 13.6720 (7) Å

  • β = 116.149 (3)°

  • V = 1718.87 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 120 K

  • 0.12 × 0.10 × 0.06 mm

Data collection

  • Bruker-Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.927, T max = 0.963

  • 9021 measured reflections

  • 3197 independent reflections

  • 2768 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.098

  • S = 1.06

  • 3197 reflections

  • 239 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983), 1504 Friedel pairs

  • Flack parameter: 0.12 (8)

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022105/kj2150sup1.cif

e-66-o1663-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022105/kj2150Isup2.hkl

e-66-o1663-Isup2.hkl (156.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O4i 0.88 (2) 2.21 (4) 2.906 (4) 135 (4)
N2—H1N⋯O1ii 0.88 (2) 2.59 (4) 3.230 (4) 130 (4)
N3—H3N⋯O2iii 0.88 (2) 2.11 (3) 2.929 (5) 154 (5)
C10—H10B⋯O2iv 0.99 2.31 3.267 (5) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

The title compound is a thiazide diuretic drug. The asymmetric unit contains a single molecule (see Fig. 1), and the lattice parameters are consistent with a preliminary crystallographic study (Dupont & Dideberg, 1970). The geometrical parameters of the thiazide unit are in concert with other structures of the same class of compounds (see section Related literature). The S2—N3 bond of the sulfonyl group is gauche with respect to the C5—C6 bond of the phenyl ring. The conformation of C—S—C—C side chain of the heterocyclic ring is characterized by the torsions angles N1—C1—C9—S3 = 170.8 (3)°, C1—C9 —S3—C10 = 162.6 (3)° and C9—S3—C10—C11 = 94.5 (4)°.

Each polythiazide molecule is N—H···O bonded to two neighbouring molecules so that a hydrogen bonded sheet parallel to (-101) is formed (see Fig. 2). The NH group and one sulfonamide O atom are engaged in an N2—H···O4(x + 1/2, -y + 1/2) interaction. An N3—H···O2(x, y - 1, z) bond links two molecules via the sulfonamide NH2 group and a thiazide sulfonyl O atom. Each N—H···O bonded sheet contains an additional short C10—H···O2(x + 1/2, -y + 3/2, z + 1/2) contact (see Table 1). A longer N2—H···O1(x, -y + 1, z + 1/2) contact between neighbouring sheets, in which the NH group is involved again, is also worth mentioning. The closest intermolecular contact of the second NH2 H atom is to the S atom of the side chain, H2N···S3(x, -y + 1, z - 1/2) = 2.93 (4) Å.

Experimental

The investigated crystals were obtained from a polythiazide sample from Pfizer (Brussels, Belgium).

Refinement

All H atoms were identified in a difference map. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.98 Å) and refined with 1.5 Ueq(C). H atoms bonded to primary (C—H = 1.00 Å), secondary CH2 (C—H = 0.99 Å) and aromatic carbon atoms (C—H = 0.95 Å) were positioned geometrically and refined with Uiso = 1.2 Ueq(C). Hydrogen atoms attached to N were refined with restrained distances [N—H = 0.88 (2) Å]; and their Uiso parameters were refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size.

Fig. 2.

Fig. 2.

Portion of a hydrogen bonded sheet parallel to (-101) and defined by N—H···O (dashed lines) and additional C—H···O (dotted lines) contacts. H and O atoms directly involved in these interactions are drawn as balls, and hydrogen attached to C atoms are omitted for clarity.

Crystal data

C11H13ClF3N3O4S3 F(000) = 896
Mr = 439.87 Dx = 1.700 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 11202 reflections
a = 14.6659 (7) Å θ = 2.9–27.5°
b = 9.5498 (6) Å µ = 0.64 mm1
c = 13.6720 (7) Å T = 120 K
β = 116.149 (3)° Plate, colourless
V = 1718.87 (16) Å3 0.12 × 0.10 × 0.06 mm
Z = 4

Data collection

Bruker-Nonius Roper CCD camera on κ-goniostat diffractometer 3197 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode 2768 reflections with I > 2σ(I)
graphite Rint = 0.055
Detector resolution: 9.091 pixels mm-1 θmax = 26.0°, θmin = 3.3°
φ & ω scans h = −17→18
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −11→11
Tmin = 0.927, Tmax = 0.963 l = −15→16
9021 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.009P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3197 reflections Δρmax = 0.32 e Å3
239 parameters Δρmin = −0.41 e Å3
5 restraints Absolute structure: Flack (1983), 1504 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.12 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.88627 (8) 0.03391 (10) 0.90846 (8) 0.0280 (2)
S1 0.94030 (7) 0.63949 (10) 0.76867 (7) 0.0226 (2)
S2 0.77245 (7) 0.12532 (10) 0.65142 (8) 0.0241 (2)
S3 1.04262 (8) 0.75479 (12) 1.17195 (8) 0.0262 (2)
O1 0.9673 (2) 0.6291 (3) 0.6804 (2) 0.0285 (7)
O2 0.8556 (2) 0.7293 (3) 0.7536 (2) 0.0272 (7)
O3 0.7388 (2) 0.2033 (3) 0.5523 (2) 0.0348 (7)
O4 0.6988 (2) 0.0628 (3) 0.6808 (2) 0.0344 (7)
N1 1.0394 (2) 0.6927 (4) 0.8780 (3) 0.0228 (7)
N2 1.0131 (3) 0.5322 (3) 0.9992 (3) 0.0214 (7)
H1N 1.043 (4) 0.502 (6) 1.067 (2) 0.052 (16)*
N3 0.8417 (3) −0.0017 (4) 0.6449 (3) 0.0255 (8)
H2N 0.892 (3) 0.022 (5) 0.631 (4) 0.050 (16)*
H3N 0.856 (4) −0.066 (4) 0.696 (3) 0.041 (15)*
C1 1.0167 (3) 0.6786 (4) 0.9736 (3) 0.0233 (9)
H1 0.9479 0.7195 0.9531 0.028*
C2 0.9619 (3) 0.4380 (4) 0.9200 (3) 0.0192 (8)
C3 0.9196 (3) 0.4722 (4) 0.8079 (3) 0.0193 (8)
C4 0.8626 (3) 0.3757 (4) 0.7286 (3) 0.0188 (8)
H4 0.8328 0.4027 0.6541 0.023*
C5 0.8483 (3) 0.2403 (4) 0.7563 (3) 0.0199 (8)
C6 0.8960 (3) 0.2032 (4) 0.8677 (3) 0.0192 (8)
C7 0.9523 (3) 0.2976 (4) 0.9475 (3) 0.0206 (8)
H7 0.9849 0.2686 1.0215 0.025*
C8 1.1391 (3) 0.6397 (5) 0.8917 (3) 0.0289 (10)
H8A 1.1933 0.6981 0.9447 0.043*
H8B 1.1421 0.6430 0.8216 0.043*
H8C 1.1480 0.5428 0.9180 0.043*
C9 1.0919 (3) 0.7580 (4) 1.0712 (3) 0.0251 (9)
H9A 1.0985 0.8557 1.0509 0.030*
H9B 1.1595 0.7129 1.1004 0.030*
C10 1.1529 (3) 0.8004 (6) 1.2942 (3) 0.0360 (11)
H10A 1.1519 0.7472 1.3558 0.043*
H10B 1.2143 0.7715 1.2865 0.043*
C11 1.1605 (4) 0.9502 (6) 1.3201 (4) 0.0438 (13)
F1 1.2461 (3) 0.9823 (5) 1.4089 (3) 0.0842 (14)
F2 1.1618 (3) 1.0300 (4) 1.2398 (3) 0.0708 (10)
F3 1.0838 (2) 0.9967 (4) 1.3395 (3) 0.0656 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0427 (6) 0.0181 (5) 0.0234 (5) −0.0054 (4) 0.0147 (4) −0.0008 (4)
S1 0.0297 (5) 0.0179 (5) 0.0215 (5) 0.0026 (4) 0.0125 (4) 0.0038 (4)
S2 0.0276 (5) 0.0226 (6) 0.0185 (5) −0.0012 (5) 0.0069 (4) −0.0028 (4)
S3 0.0322 (5) 0.0254 (6) 0.0257 (5) −0.0050 (4) 0.0172 (4) −0.0072 (4)
O1 0.0404 (17) 0.0296 (17) 0.0201 (15) −0.0011 (13) 0.0175 (13) 0.0038 (12)
O2 0.0278 (15) 0.0215 (16) 0.0331 (17) 0.0057 (13) 0.0141 (13) 0.0059 (13)
O3 0.0458 (18) 0.0267 (17) 0.0168 (15) 0.0028 (14) 0.0000 (12) −0.0001 (12)
O4 0.0300 (16) 0.0406 (19) 0.0346 (18) −0.0126 (15) 0.0161 (14) −0.0130 (15)
N1 0.0321 (19) 0.0193 (18) 0.0214 (18) −0.0022 (15) 0.0157 (15) −0.0036 (14)
N2 0.0327 (18) 0.0143 (17) 0.0176 (18) −0.0026 (14) 0.0116 (15) 0.0015 (13)
N3 0.034 (2) 0.020 (2) 0.025 (2) 0.0027 (16) 0.0156 (16) −0.0014 (15)
C1 0.036 (2) 0.017 (2) 0.021 (2) −0.0040 (18) 0.0165 (17) −0.0021 (16)
C2 0.0214 (19) 0.019 (2) 0.017 (2) 0.0023 (16) 0.0083 (16) −0.0020 (16)
C3 0.024 (2) 0.016 (2) 0.019 (2) 0.0041 (16) 0.0111 (16) 0.0020 (16)
C4 0.0179 (18) 0.019 (2) 0.017 (2) 0.0053 (16) 0.0061 (15) 0.0013 (16)
C5 0.022 (2) 0.019 (2) 0.019 (2) −0.0006 (17) 0.0092 (17) −0.0054 (16)
C6 0.0242 (19) 0.017 (2) 0.018 (2) 0.0004 (16) 0.0109 (16) 0.0005 (16)
C7 0.028 (2) 0.019 (2) 0.0131 (19) −0.0031 (17) 0.0075 (15) 0.0003 (15)
C8 0.021 (2) 0.041 (3) 0.025 (2) 0.0011 (19) 0.0104 (17) 0.0052 (19)
C9 0.032 (2) 0.023 (2) 0.021 (2) 0.0007 (18) 0.0118 (17) −0.0009 (17)
C10 0.033 (2) 0.054 (3) 0.020 (2) 0.004 (2) 0.0101 (18) −0.002 (2)
C11 0.040 (3) 0.054 (4) 0.044 (3) −0.020 (2) 0.024 (2) −0.021 (3)
F1 0.066 (2) 0.128 (4) 0.062 (2) −0.063 (2) 0.0310 (18) −0.056 (2)
F2 0.095 (2) 0.052 (2) 0.072 (2) −0.0414 (19) 0.043 (2) −0.0140 (18)
F3 0.069 (2) 0.052 (2) 0.095 (3) −0.0182 (17) 0.053 (2) −0.0440 (19)

Geometric parameters (Å, °)

Cl1—C6 1.736 (4) C2—C3 1.415 (5)
S1—O1 1.429 (3) C2—C7 1.416 (6)
S1—O2 1.448 (3) C3—C4 1.388 (5)
S1—N1 1.640 (3) C4—C5 1.390 (5)
S1—C3 1.753 (4) C4—H4 0.9500
S2—O3 1.430 (3) C5—C6 1.412 (5)
S2—O4 1.437 (3) C6—C7 1.375 (5)
S2—N3 1.610 (4) C7—H7 0.9500
S2—C5 1.759 (4) C8—H8A 0.9800
S3—C10 1.794 (4) C8—H8B 0.9800
S3—C9 1.816 (4) C8—H8C 0.9800
N1—C8 1.480 (5) C9—H9A 0.9900
N1—C1 1.490 (5) C9—H9B 0.9900
N2—C2 1.353 (5) C10—C11 1.467 (7)
N2—C1 1.447 (5) C10—H10A 0.9900
N2—H1N 0.88 (2) C10—H10B 0.9900
N3—H2N 0.87 (2) C11—F3 1.340 (6)
N3—H3N 0.884 (19) C11—F2 1.343 (6)
C1—C9 1.508 (5) C11—F1 1.343 (6)
C1—H1 1.0000
O1—S1—O2 117.39 (17) C3—C4—H4 119.5
O1—S1—N1 109.12 (17) C5—C4—H4 119.5
O2—S1—N1 107.83 (17) C4—C5—C6 117.7 (3)
O1—S1—C3 110.15 (18) C4—C5—S2 118.4 (3)
O2—S1—C3 109.29 (18) C6—C5—S2 123.9 (3)
N1—S1—C3 101.91 (18) C7—C6—C5 122.0 (4)
O3—S2—O4 119.56 (19) C7—C6—Cl1 117.5 (3)
O3—S2—N3 107.61 (19) C5—C6—Cl1 120.5 (3)
O4—S2—N3 105.8 (2) C6—C7—C2 120.3 (3)
O3—S2—C5 106.11 (18) C6—C7—H7 119.8
O4—S2—C5 108.34 (18) C2—C7—H7 119.8
N3—S2—C5 109.11 (19) N1—C8—H8A 109.5
C10—S3—C9 101.8 (2) N1—C8—H8B 109.5
C8—N1—C1 116.6 (3) H8A—C8—H8B 109.5
C8—N1—S1 116.0 (3) N1—C8—H8C 109.5
C1—N1—S1 108.8 (2) H8A—C8—H8C 109.5
C2—N2—C1 121.0 (3) H8B—C8—H8C 109.5
C2—N2—H1N 118 (4) C1—C9—S3 106.4 (3)
C1—N2—H1N 121 (4) C1—C9—H9A 110.5
S2—N3—H2N 116 (4) S3—C9—H9A 110.5
S2—N3—H3N 115 (3) C1—C9—H9B 110.5
H2N—N3—H3N 115 (5) S3—C9—H9B 110.5
N2—C1—N1 110.2 (3) H9A—C9—H9B 108.6
N2—C1—C9 111.2 (3) C11—C10—S3 113.7 (4)
N1—C1—C9 111.8 (3) C11—C10—H10A 108.8
N2—C1—H1 107.8 S3—C10—H10A 108.8
N1—C1—H1 107.8 C11—C10—H10B 108.8
C9—C1—H1 107.8 S3—C10—H10B 108.8
N2—C2—C3 122.5 (4) H10A—C10—H10B 107.7
N2—C2—C7 120.1 (3) F3—C11—F2 106.8 (5)
C3—C2—C7 117.3 (3) F3—C11—F1 106.1 (4)
C4—C3—C2 121.2 (4) F2—C11—F1 105.4 (4)
C4—C3—S1 119.5 (3) F3—C11—C10 113.0 (4)
C2—C3—S1 119.3 (3) F2—C11—C10 112.5 (4)
C3—C4—C5 121.1 (3) F1—C11—C10 112.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N···O4i 0.88 (2) 2.21 (4) 2.906 (4) 135 (4)
N2—H1N···O1ii 0.88 (2) 2.59 (4) 3.230 (4) 130 (4)
N3—H3N···O2iii 0.88 (2) 2.11 (3) 2.929 (5) 154 (5)
C10—H10B···O2iv 0.99 2.31 3.267 (5) 163

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, −y+1, z+1/2; (iii) x, y−1, z; (iv) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2150).

References

  1. Dupont, L. & Dideberg, O. (1970). Acta Cryst. B26, 1884–1885.
  2. Fabbiani, F. P. A., Leech, C. K., Shankland, K., Johnston, A., Fernandes, P., Florence, A. J. & Shankland, N. (2007). Acta Cryst. C63, o659–o663. [DOI] [PubMed]
  3. Fernandes, P., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62, o2216–o2218.
  4. Fernandes, P., Johnston, A., Leech, C. K., Shankland, K., David, W. I. F. & Florence, A. J. (2007). Acta Cryst. E63, o3956. [DOI] [PubMed]
  5. Fernandes, P., Leech, C. K., Johnston, A., Shankland, K., David, W. I. F., Shankland, N. & Florence, A. J. (2007). Acta Cryst. E63, o3685. [DOI] [PubMed]
  6. Fernandes, P., Shankland, K., Florence, A. J., Shankland, N. & Johnston, A. (2007). J. Pharm. Sci.96, 1192–1202. [DOI] [PubMed]
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007a). Acta Cryst. E63, o2422.
  10. Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007b). Acta Cryst. E63, o2423.
  11. Johnston, A., Florence, A. J. & Kennedy, A. R. (2007). Acta Cryst. E63, o4021.
  12. Johnston, A., Florence, A. J. & Kennedy, A. R. (2008). Acta Cryst. E64, o1105–o1106. [DOI] [PMC free article] [PubMed]
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  14. McManus, J. M. (1961). US Patent No. 3009911.
  15. Negendra Vara, P. T., Venkata, R. E., Sarveswara, S. B., Sastry, S. P. C. & Kostek, L. J. (1991). Analytical Profiles of Drug Substances and Excipients, Vol. 20 edited by K. Florey, pp. 665–692. San Diego: Academic Press.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  20. Zhou, H., Hu, N.-H., Li, Z.-G., Dou, Y.-L. & Xu, J.-W. (2006). Acta Cryst. E62, o3009–o3010.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022105/kj2150sup1.cif

e-66-o1663-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022105/kj2150Isup2.hkl

e-66-o1663-Isup2.hkl (156.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES