Abstract
1. DEAE-cellulose chromatography of mouse brain cytosol indicated the presence of only the type II isoenzyme of cyclic AMP-dependent protein kinase. Mouse heart cytosol contained approximately equal amounts of the type I and type II isoenzymes. 2. Both brain and heart type II isoenzymes reassociated after a transient exposure to cyclic AMP, but the heart type I isoenzyme remained dissociated. 3. Elution of brain cytosol continuously exposed to cyclic AMP resolved multiple peaks of protein kinase and cyclic AMP-binding activities. A single peak of kinase and multiple peaks of cyclic AMP-binding activities were found under the same conditions with heart cytosol. Various control experiments suggested that the heterogeneity within the brain type II isoenzymic class had not been caused by proteolysis. 4. Kinetic experiments with unfractionated brain cytosol showed that the binding of cyclic AMP, the dissociation of cyclic AMP from protein and the rate of heat denaturation of the cyclic AMP-binding activity gave results consistent with the presence of multiple binding species. 5. It concluded that the type II isoenzymic peak obtained by DEAE-cellulose chromatography of mouse brain cytosol represents a class of enzymes containing multiple regulatory and catalytic subunits. The two heart cytosol isoenzymes contain a common catalytic subunit. The degree of protein kinase 'microheterogeneity", defined as the presence of multiple regulatory and/or catalytic subunits within a single isoenzymic class, appears to be tissue-specific.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRECKENRIDGE B. M. THE MEASUREMENT OF CYCLIC ADENYLATE IN TISSUES. Proc Natl Acad Sci U S A. 1964 Dec;52:1580–1586. doi: 10.1073/pnas.52.6.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bechtel P. J., Beavo J. A., Krebs E. G. Purification and characterization of catalytic subunit of skeletal muscle adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1977 Apr 25;252(8):2691–2697. [PubMed] [Google Scholar]
- Bloom F. E., Wedner H. J., Parker C. W. The use of antibodies to study cell structure and metabolism. Pharmacol Rev. 1973 Jun;25(2):343–358. [PubMed] [Google Scholar]
- Byus C. V., Chubb J. M., Huxtable R. J., Russell D. H. Increase in type I adenosine 3',5'-monophosphate-dependent protein kinase during isoproterenol-induced cardiac hypertrophy. Biochem Biophys Res Commun. 1976 Dec 6;73(3):694–702. doi: 10.1016/0006-291x(76)90866-4. [DOI] [PubMed] [Google Scholar]
- Byus C. V., Klimpel G. R., Lucas D. O., Russell D. H. Type I and type II cyclic AMP-dependent protein kinase as opposite effectors of lymphocyte mitogenesis. Nature. 1977 Jul 7;268(5615):63–64. doi: 10.1038/268063a0. [DOI] [PubMed] [Google Scholar]
- Chen L. J., Walsh D. A. Multiple forms of hepatic adenosine 3':5'-monophosphate dependent protein kinase. Biochemistry. 1971 Sep 14;10(19):3614–3621. doi: 10.1021/bi00795a020. [DOI] [PubMed] [Google Scholar]
- Corbin J. D., Brostrom C. O., King C. A., Krebs E. G. Studies on the adenosine 3',5'-monophosphate-dependent protein kinases of rabbit skeletal muscle. J Biol Chem. 1972 Dec 10;247(23):7790–7798. [PubMed] [Google Scholar]
- Corbin J. D., Keely S. L. Characterization and regulation of heart adenosine 3':5'-monophosphate-dependent protein kinase isozymes. J Biol Chem. 1977 Feb 10;252(3):910–918. [PubMed] [Google Scholar]
- Corbin J. D., Keely S. L., Park C. R. The distribution and dissociation of cyclic adenosine 3':5'-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues. J Biol Chem. 1975 Jan 10;250(1):218–225. [PubMed] [Google Scholar]
- Corbin J. D., Sugden P. H., Lincoln T. M., Keely S. L. Compartmentalization of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in heart tissue. J Biol Chem. 1977 Jun 10;252(11):3854–3861. [PubMed] [Google Scholar]
- Costa M., Gerner E. W., Russell D. H. Cell cycle-specific activity of type I and type II cyclic adenosine 3':5'-monophosphate-dependent protein kinases in Chinese hamster ovary cells. J Biol Chem. 1976 Jun 10;251(11):3313–3319. [PubMed] [Google Scholar]
- Dufau M. L., Tsuruhara T., Horner K. A., Podesta E., Catt K. J. Intermediate role of adenosine 3':5'-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3419–3423. doi: 10.1073/pnas.74.8.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischer N., Rosen O. M., Reichlin M. Radioimmunoassay of bovine heart protein kinase. Proc Natl Acad Sci U S A. 1976 Jan;73(1):54–58. doi: 10.1073/pnas.73.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gharrett A. J., Malkinson A. M., Sheppard J. R. Cyclic AMP-dependent protein kinases from normal and SV40-transformed 3T3 cells. Nature. 1976 Dec 16;264(5587):673–675. doi: 10.1038/264673a0. [DOI] [PubMed] [Google Scholar]
- Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann F., Beavo J. A., Bechtel P. J., Krebs E. G. Comparison of adenosine 3':5'-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J Biol Chem. 1975 Oct 10;250(19):7795–7801. [PubMed] [Google Scholar]
- Kemp B. E., Bylund D. B., Huang T. S., Krebs E. G. Substrate specificity of the cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3448–3452. doi: 10.1073/pnas.72.9.3448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khac L. D., Harbon S., Clauser H. J. Intracellular titration of cyclic AMP bound to receptor proteins and correlation with cyclic-AMP levels in the surviving rat diaphragm. Eur J Biochem. 1973 Dec 3;40(1):177–185. doi: 10.1111/j.1432-1033.1973.tb03183.x. [DOI] [PubMed] [Google Scholar]
- Knight B. L., Skala J. P. Protein kinases in brown adipose tissue of developing rats. Electrophoretic separation and assay of soluble protein kinases on polyacrylamide gels and a study of their properties and changes during development. J Biol Chem. 1977 Aug 10;252(15):5356–5362. [PubMed] [Google Scholar]
- Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Langan T. A. Protein kinases and protein kinase substrates. Adv Cyclic Nucleotide Res. 1973;3:99–153. [PubMed] [Google Scholar]
- Lee P. C., Radloff D., Schweppe J. S., Jungmann R. A. Testicular protein kinases. Characterization of multiple forms and ontogeny. J Biol Chem. 1976 Feb 25;251(4):914–921. [PubMed] [Google Scholar]
- Mackenzie C. W., 3rd, Stellwagen R. H. Differences between liver and hepatoma cells in their complements of adenosine 3':5'-monophosphate-binding proteins and protein kinases. J Biol Chem. 1974 Sep 25;249(18):5755–5762. [PubMed] [Google Scholar]
- Means A. R., Fakunding J. L., Tindall D. J. Follicle stimulating hormone regulation of protein kinase activity and protein synthesis in testis. Biol Reprod. 1976 Feb;14(1):54–63. doi: 10.1095/biolreprod14.1.54. [DOI] [PubMed] [Google Scholar]
- Miyamoto E., Petzold G. L., Kuo J. F., Greengard P. Dissociation and activation of adenosine 3',5'-monophosphate-dependent and guanosine 3',5'-monophosphate-dependent protein kinases by cyclic nucleotides and by substrate proteins. J Biol Chem. 1973 Jan 10;248(1):179–189. [PubMed] [Google Scholar]
- Nesterova M. V., Sashchenko L. P., Vasiliev V. Y., Severin E. S. A cyclic adenosine 3',5'-monophosphate-dependent histone kinase from pig brain. Purification and some properties of the enzyme. Biochim Biophys Acta. 1975 Feb 19;377(2):271–281. doi: 10.1016/0005-2744(75)90309-5. [DOI] [PubMed] [Google Scholar]
- Rubin C. S., Erlichman J., Rosen O. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase of human erythrocyte membranes. J Biol Chem. 1972 Oct 10;247(19):6135–6139. [PubMed] [Google Scholar]
- Soderling T. R., Corbin J. D., Park C. R. Regulation of adenosine 3',5'-monophosphate-dependent protein kinase. II. Hormonal regulation of the adipose tissue enzyme. J Biol Chem. 1973 Mar 10;248(5):1822–1829. [PubMed] [Google Scholar]
- Steiner A. L., Koide Y., Earp H. S., Bechtel P. J., Beavo J. A. Compartmentalization of cyclic nucleotides and cyclic AMP-dependent protein kinases in rat liver: immunocytochemical demonstration. Adv Cyclic Nucleotide Res. 1978;9:691–705. [PubMed] [Google Scholar]
- Steiner A. L., Whitely T. H., Ong S. H., Stowe N. W. Cyclic AMP and cyclic GMP: studies utilizing immunohistochemical techniques for the localization of the nucleotides in tissue. Metabolism. 1975 Mar;24(3):419–428. doi: 10.1016/0026-0495(75)90121-3. [DOI] [PubMed] [Google Scholar]
- Sugden P. H., Corbin J. D. Adenosine 3':5'-cyclic monophosphate-binding proteins in bovine and rat tissues. Biochem J. 1976 Nov;159(2):423–437. doi: 10.1042/bj1590423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugden P. H., Holladay L. A., Reimann E. M., Corbin J. D. Purification and characterization of the catalytic subunit of adenosine 3':5'-cyclic monophosphate-dependent protein kinase from bovine liver. Biochem J. 1976 Nov;159(2):409–422. doi: 10.1042/bj1590409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talmadge K. W., Bechtel E., Eppenberger U. Protein kinases and proteins binding adenosine 3':5'-monophosphate in subcellular fractions of calf ovaries. Effect of trypsin and protease inhibitors on protein kinases. Eur J Biochem. 1977 Sep;78(2):419–430. doi: 10.1111/j.1432-1033.1977.tb11754.x. [DOI] [PubMed] [Google Scholar]
- Tao M., Hackett P. Adenosine cyclic 3':5'-monophosphate-dependent protein kinase from rabbit erythrocytes. Purification and characterization of multiple forms. J Biol Chem. 1973 Aug 10;248(15):5324–5332. [PubMed] [Google Scholar]
- Tao M., Salas M. L., Lipmann F. Mechanism of activation by adenosine 3':5'-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes. Proc Natl Acad Sci U S A. 1970 Sep;67(1):408–414. doi: 10.1073/pnas.67.1.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uno I., Ueda T., Greenglad P. Differences in properties of cytosol and membrane-derived protein kinases. J Biol Chem. 1976 Apr 10;251(7):2192–2195. [PubMed] [Google Scholar]
- Walter U., Uno I., Liu A. Y., Greengard P. Study of autophosphorylation of isoenzymes of cyclic AMP-dependent protein kinases. J Biol Chem. 1977 Oct 10;252(19):6588–6590. [PubMed] [Google Scholar]
- Yamamura H., Nishiyama K., Shimomura R., Nishizuka Y. Comparison of catalytic units of muscle and liver adenosine 3',5'-monophosphate dependent protein kinases. Biochemistry. 1973 Feb 27;12(5):856–862. doi: 10.1021/bi00729a012. [DOI] [PubMed] [Google Scholar]