Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):o1470–o1471. doi: 10.1107/S1600536811018678

Ethyl 4-oxo-2,3,4,9-tetra­hydro-1H-carbazole-3-carboxyl­ate

Cevher Gündoğdu a, Mustafa Göçmentürk a, Yavuz Ergün a, Barış Tercan b, Tuncer Hökelek c,*
PMCID: PMC3120486  PMID: 21754841

Abstract

In the title compound, C15H15NO3, the carbazole skeleton includes an eth­oxy­carbonyl group at the 3-position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 0.89 (4)°. The cyclo­hexenone ring has an envelope conformation. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three dimensional network. A weak C—H⋯π inter­action is also observed.

Related literature

For background to tetra­hydro­carbazole systems present in indole-type alkaloids, see: Saxton (1983). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2009); Patır et al. (1997); Hökelek & Patır (1999); Çaylak et al. (2007); Uludağ et al. (2009). For the use of 4-oxo-tetra­hydro­carbazole in the syntheses of biologically active species, see: Kumar et al. (2008); Ergün et al. (2002); Li & Vince (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o1470-scheme1.jpg

Experimental

Crystal data

  • C15H15NO3

  • M r = 257.28

  • Orthorhombic, Inline graphic

  • a = 9.1057 (3) Å

  • b = 12.7031 (4) Å

  • c = 21.3874 (5) Å

  • V = 2473.89 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.43 × 0.26 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.960, T max = 0.981

  • 12029 measured reflections

  • 2993 independent reflections

  • 2258 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.102

  • S = 1.04

  • 2993 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018678/hb5881sup1.cif

e-67-o1470-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018678/hb5881Isup2.hkl

e-67-o1470-Isup2.hkl (144KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018678/hb5881Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C5A/C5–C8,C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O2i 0.885 (16) 2.044 (16) 2.9103 (15) 166.0 (15)
C3—H3⋯O1ii 1.00 2.41 3.4053 (17) 173
C11—H11ACg3iii 0.99 2.86 3.7358 (15) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

supplementary crystallographic information

Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Hökelek et al., 1994; Patır et al., 1997; Hökelek et al., 1998; Hökelek et al., 1999; Hökelek & Patır, 1999). Although 4-oxo-tetrahydrocarbazoles rarely occur in nature, they have been increasingly important intermediates in the syntheses of indole or carbazole alkaloids and various biologically active heterocyclic compounds because of their unique structures. For instance, 4-oxo-tetrahydrocarbazole was used in the syntheses of antiemetic drugs, central nervous system active drugs and NPY-1 antagonists (Kumar et al., 2008). They have also been used in the syntheses of indole alkaloids (Ergün et al., 2002). Tetrahydrocarbazolone based antitumor active compounds and inhibitors of HIV integrase were synthesized from 4-oxo-tetrahydrocarbazoles (Li & Vince, 2006). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound contains a carbazole skeleton with an ethoxycarbonyl group at the 3 position, (Fig. 1), where the bond lengths are close to standard values (Allen et al., 1987) and generally agree with those in the previously reported compounds. In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of -0.012 (1) Å for atom C5a] with dihedral angle of B/C = 0.89 (4)°. Ring A (C1—C4/C4a/C9a) adopts envelope conformation with atom C2 displaced by -0.632 (2) Å from the plane of the other rings atoms, as in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one (Çaylak et al., 2007), 3,3-ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009) and ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (Hökelek et al., 2009).

In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds link the molecules into a three dimensional network (Table 1 and Fig. 2). There also exists a weak C—H···π interaction (Table 1).

Experimental

A solution of 2,3-dichloro -5,6-dicyano-p-benzoquinone (9.36 g, 41.20 mmol) in tetrahydrofuran (20 ml, 90%) was added dropwise to a solution of ethyl 2,3,4,9-tetrahydro-1H -carbazole-3-carboxylate (5.00 g, 20.60 mmol) in tetrahydrofuran (50 ml, 90%) at 268 K. The reaction mixture was stirred for 10 min at 268 K, and then the solution was poured into sodium hydroxide (500 ml, 10%) and extracted with ethyl acetate. The organic layer was dried with anhydrous magnesium sulfate, and the solvent was removed. The residue was purified by chromatography using silica gel and ethyl acetate. After the solvent was evaporated, the product was crystallized from ether to yield colourless blocks of (I) (yield; 0.58 g, 11%, m.p. 396 K).

Refinement

H9 atom is located in a difference Fourier synthesis and refined isotropically. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].

Crystal data

C15H15NO3 F(000) = 1088
Mr = 257.28 Dx = 1.382 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3293 reflections
a = 9.1057 (3) Å θ = 2.9–28.3°
b = 12.7031 (4) Å µ = 0.10 mm1
c = 21.3874 (5) Å T = 100 K
V = 2473.89 (13) Å3 Block, colorless
Z = 8 0.43 × 0.26 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2993 independent reflections
Radiation source: fine-focus sealed tube 2258 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −11→9
Tmin = 0.960, Tmax = 0.981 k = −16→8
12029 measured reflections l = −20→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.044P)2 + 0.6029P] where P = (Fo2 + 2Fc2)/3
2993 reflections (Δ/σ)max < 0.001
177 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.27325 (11) 0.49989 (7) 0.23207 (4) 0.0234 (2)
O2 0.13644 (11) 0.53475 (7) 0.37765 (4) 0.0226 (2)
O3 0.31033 (11) 0.40993 (7) 0.36958 (4) 0.0220 (2)
C1 0.01764 (17) 0.22360 (9) 0.25890 (6) 0.0217 (3)
H1A 0.0260 0.1466 0.2651 0.026*
H1B −0.0879 0.2422 0.2578 0.026*
C2 0.09311 (17) 0.28148 (9) 0.31263 (7) 0.0218 (3)
H2A 0.1906 0.2495 0.3202 0.026*
H2B 0.0340 0.2730 0.3511 0.026*
C3 0.11251 (16) 0.39973 (9) 0.29874 (6) 0.0196 (3)
H3 0.0122 0.4306 0.2936 0.024*
C4 0.19696 (16) 0.42026 (9) 0.23804 (6) 0.0191 (3)
C4A 0.17494 (15) 0.34286 (9) 0.18970 (6) 0.0178 (3)
C5 0.30954 (16) 0.40632 (10) 0.08810 (6) 0.0200 (3)
H5 0.3511 0.4689 0.1048 0.024*
C5A 0.22407 (15) 0.34016 (9) 0.12551 (6) 0.0176 (3)
C6 0.33239 (17) 0.37872 (11) 0.02632 (7) 0.0231 (3)
H6 0.3903 0.4232 0.0005 0.028*
C7 0.27209 (17) 0.28667 (10) 0.00100 (7) 0.0244 (3)
H7 0.2901 0.2697 −0.0416 0.029*
C8 0.18676 (17) 0.22010 (10) 0.03698 (7) 0.0229 (3)
H8 0.1457 0.1576 0.0200 0.027*
C8A 0.16323 (15) 0.24812 (10) 0.09904 (7) 0.0192 (3)
N9 0.08119 (13) 0.19804 (9) 0.14526 (5) 0.0202 (3)
H9 0.0272 (18) 0.1408 (13) 0.1399 (7) 0.029 (4)*
C9A 0.08866 (15) 0.25402 (9) 0.19910 (6) 0.0181 (3)
C10 0.18566 (16) 0.45682 (10) 0.35239 (6) 0.0187 (3)
C11 0.39176 (16) 0.45682 (10) 0.42153 (7) 0.0212 (3)
H11A 0.4609 0.4042 0.4388 0.025*
H11B 0.3222 0.4767 0.4551 0.025*
C12 0.47603 (17) 0.55264 (10) 0.40117 (7) 0.0246 (3)
H12A 0.5356 0.5785 0.4361 0.037*
H12B 0.4071 0.6076 0.3881 0.037*
H12C 0.5403 0.5342 0.3661 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0268 (6) 0.0194 (4) 0.0241 (6) −0.0053 (4) 0.0006 (5) −0.0008 (4)
O2 0.0235 (6) 0.0223 (4) 0.0220 (6) 0.0049 (4) −0.0009 (4) −0.0027 (4)
O3 0.0217 (6) 0.0210 (4) 0.0233 (5) 0.0045 (4) −0.0023 (4) −0.0024 (4)
C1 0.0210 (8) 0.0174 (6) 0.0265 (8) −0.0011 (5) 0.0036 (6) −0.0004 (5)
C2 0.0251 (8) 0.0185 (6) 0.0216 (8) −0.0003 (5) 0.0050 (6) 0.0007 (5)
C3 0.0213 (8) 0.0171 (6) 0.0204 (7) 0.0022 (5) −0.0005 (6) −0.0008 (5)
C4 0.0188 (8) 0.0172 (6) 0.0212 (8) 0.0027 (5) −0.0041 (6) 0.0012 (5)
C4A 0.0171 (8) 0.0177 (6) 0.0186 (7) 0.0003 (5) −0.0022 (6) 0.0015 (5)
C5 0.0199 (8) 0.0201 (6) 0.0199 (8) −0.0003 (5) −0.0031 (6) 0.0019 (5)
C5A 0.0171 (8) 0.0172 (6) 0.0184 (7) 0.0030 (5) −0.0034 (6) 0.0005 (5)
C6 0.0227 (8) 0.0261 (7) 0.0206 (8) 0.0027 (6) −0.0006 (6) 0.0047 (5)
C7 0.0268 (9) 0.0283 (7) 0.0179 (7) 0.0057 (6) −0.0011 (6) −0.0012 (6)
C8 0.0245 (8) 0.0210 (6) 0.0231 (8) 0.0026 (5) −0.0036 (6) −0.0036 (5)
C8A 0.0183 (8) 0.0184 (6) 0.0207 (8) 0.0031 (5) −0.0017 (6) 0.0009 (5)
N9 0.0205 (7) 0.0164 (5) 0.0236 (7) −0.0011 (5) 0.0009 (5) −0.0028 (4)
C9A 0.0157 (7) 0.0165 (5) 0.0222 (7) 0.0029 (5) −0.0014 (6) −0.0007 (5)
C10 0.0187 (8) 0.0185 (6) 0.0190 (7) 0.0005 (5) 0.0026 (6) 0.0040 (5)
C11 0.0218 (8) 0.0241 (6) 0.0178 (7) 0.0035 (5) −0.0026 (6) 0.0012 (5)
C12 0.0246 (9) 0.0249 (6) 0.0243 (8) 0.0008 (6) −0.0021 (7) 0.0003 (5)

Geometric parameters (Å, °)

O1—C4 1.2338 (15) C5A—C5 1.3972 (19)
O2—C10 1.2136 (15) C5A—C8A 1.4123 (17)
O3—C10 1.3336 (17) C6—C7 1.4008 (19)
O3—C11 1.4626 (16) C6—H6 0.9500
C1—C9A 1.4844 (19) C7—C8 1.382 (2)
C1—H1A 0.9900 C7—H7 0.9500
C1—H1B 0.9900 C8—H8 0.9500
C2—C1 1.5276 (19) C8A—C8 1.391 (2)
C2—H2A 0.9900 N9—C8A 1.3928 (18)
C2—H2B 0.9900 N9—C9A 1.3550 (17)
C3—C2 1.5413 (17) N9—H9 0.886 (17)
C3—C4 1.531 (2) C10—C3 1.5121 (19)
C3—H3 1.0000 C11—H11A 0.9900
C4—C4A 1.4409 (18) C11—H11B 0.9900
C4A—C5A 1.4442 (19) C12—C11 1.5033 (19)
C4A—C9A 1.3897 (17) C12—H12A 0.9800
C5—C6 1.383 (2) C12—H12B 0.9800
C5—H5 0.9500 C12—H12C 0.9800
C10—O3—C11 117.33 (10) C5—C6—H6 119.3
C2—C1—H1A 109.9 C7—C6—H6 119.3
C2—C1—H1B 109.9 C6—C7—H7 119.5
C9A—C1—C2 109.08 (11) C8—C7—C6 121.04 (14)
C9A—C1—H1A 109.9 C8—C7—H7 119.5
C9A—C1—H1B 109.9 C7—C8—C8A 117.48 (13)
H1A—C1—H1B 108.3 C7—C8—H8 121.3
C1—C2—C3 112.07 (11) C8A—C8—H8 121.3
C1—C2—H2A 109.2 N9—C8A—C5A 107.69 (12)
C1—C2—H2B 109.2 C8—C8A—N9 130.03 (12)
C3—C2—H2A 109.2 C8—C8A—C5A 122.28 (13)
C3—C2—H2B 109.2 C8A—N9—H9 125.5 (10)
H2A—C2—H2B 107.9 C9A—N9—C8A 109.67 (11)
C2—C3—H3 107.4 C9A—N9—H9 124.7 (10)
C4—C3—C2 112.77 (11) N9—C9A—C1 125.01 (12)
C4—C3—H3 107.4 N9—C9A—C4A 109.36 (12)
C10—C3—C2 111.82 (11) C4A—C9A—C1 125.62 (12)
C10—C3—C4 109.90 (11) O2—C10—O3 123.78 (13)
C10—C3—H3 107.4 O2—C10—C3 124.50 (13)
O1—C4—C3 120.68 (12) O3—C10—C3 111.71 (11)
O1—C4—C4A 124.31 (13) O3—C11—C12 111.62 (11)
C4A—C4—C3 114.98 (11) O3—C11—H11A 109.3
C4—C4A—C5A 130.93 (12) O3—C11—H11B 109.3
C9A—C4A—C4 121.94 (12) C12—C11—H11A 109.3
C9A—C4A—C5A 107.06 (11) C12—C11—H11B 109.3
C5A—C5—H5 120.7 H11A—C11—H11B 108.0
C6—C5—C5A 118.59 (13) C11—C12—H12A 109.5
C6—C5—H5 120.7 C11—C12—H12B 109.5
C5—C5A—C4A 134.64 (12) C11—C12—H12C 109.5
C5—C5A—C8A 119.13 (12) H12A—C12—H12B 109.5
C8A—C5A—C4A 106.21 (11) H12A—C12—H12C 109.5
C5—C6—C7 121.47 (14) H12B—C12—H12C 109.5
C10—O3—C11—C12 −77.69 (15) C5A—C4A—C9A—C1 178.62 (12)
C11—O3—C10—O2 −0.64 (19) C5A—C4A—C9A—N9 −0.36 (15)
C11—O3—C10—C3 −179.50 (10) C5A—C5—C6—C7 −0.1 (2)
C2—C1—C9A—N9 159.90 (13) C4A—C5A—C5—C6 −178.78 (14)
C2—C1—C9A—C4A −18.93 (18) C8A—C5A—C5—C6 −0.4 (2)
C3—C2—C1—C9A 47.43 (15) C4A—C5A—C8A—N9 0.09 (14)
C4—C3—C2—C1 −56.21 (16) C4A—C5A—C8A—C8 179.53 (13)
C10—C3—C2—C1 179.34 (12) C5—C5A—C8A—N9 −178.68 (12)
C2—C3—C4—O1 −149.89 (13) C5—C5A—C8A—C8 0.8 (2)
C2—C3—C4—C4A 32.36 (16) C5—C6—C7—C8 0.3 (2)
C10—C3—C4—O1 −24.40 (17) C6—C7—C8—C8A 0.0 (2)
C10—C3—C4—C4A 157.85 (11) N9—C8A—C8—C7 178.76 (13)
O1—C4—C4A—C5A −3.9 (2) C5A—C8A—C8—C7 −0.5 (2)
O1—C4—C4A—C9A 179.48 (13) C8A—N9—C9A—C1 −178.57 (12)
C3—C4—C4A—C5A 173.73 (13) C8A—N9—C9A—C4A 0.42 (15)
C3—C4—C4A—C9A −2.87 (18) C9A—N9—C8A—C5A −0.31 (15)
C4—C4A—C5A—C8A −176.82 (14) C9A—N9—C8A—C8 −179.70 (14)
C4—C4A—C5A—C5 1.7 (3) O2—C10—C3—C2 −126.61 (14)
C9A—C4A—C5A—C5 178.65 (15) O2—C10—C3—C4 107.35 (15)
C9A—C4A—C5A—C8A 0.16 (14) O3—C10—C3—C2 52.23 (15)
C4—C4A—C9A—N9 176.95 (12) O3—C10—C3—C4 −73.80 (13)
C4—C4A—C9A—C1 −4.1 (2)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C5A/C5–C8,C8A ring.
D—H···A D—H H···A D···A D—H···A
N9—H9···O2i 0.885 (16) 2.044 (16) 2.9103 (15) 166.0 (15)
C3—H3···O1ii 1.00 2.41 3.4053 (17) 173
C11—H11A···Cg3iii 0.99 2.86 3.7358 (15) 148

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, y, −z+1/2; (iii) −x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5881).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.
  5. Ergün, Y., Patır, S. & Okay, G. (2002). J. Heterocycl. Chem., 39, 315–317.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Hökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702–o1703. [DOI] [PMC free article] [PubMed]
  9. Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297–1299.
  10. Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.
  11. Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.
  12. Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116.
  13. Kumar, A., Singh, D., Jadhav, A., Pandya, N. D., Panmand, S. D. & Thakur, R. G. (2008). US Patent Appl. US 2008/0009635 A1.
  14. Li, X. & Vince, R. (2006). Bioorg. Med. Chem. 14, 2942–2955. [DOI] [PubMed]
  15. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  16. Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239–1242.
  17. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595–o596. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018678/hb5881sup1.cif

e-67-o1470-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018678/hb5881Isup2.hkl

e-67-o1470-Isup2.hkl (144KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018678/hb5881Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES