Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 28;67(Pt 6):o1551–o1552. doi: 10.1107/S1600536811019490

Benzyl­sulfamide

Thomas Gelbrich a,*, Mairi F Haddow a,, Ulrich J Griesser a
PMCID: PMC3120398  PMID: 21754910

Abstract

The crystal of the title compound [systematic name: 4-(benzyl­amino)­benzene­sulfonamide], C13H14N2O2S, displays a hydrogen-bonded framework structure. Mol­ecules are doubly N—H⋯O hydrogen bonded to one another via their NH2 groups and sulfonyl O atoms. These inter­actions generate a hydrogen-bonded ladder structure parallel to the a axis, which contains fused R 2 2(8) rings. The NH group serves as the hydrogen-bond donor for a second set of inter­molecular N—H⋯O=S inter­actions.

Related literature

For the pharmacology and synthesis of the title compound, see Goissedet et al. (1936); Goissedet & Despois (1938); Mellon et al. (1938); Long & Bliss (1939). For related structures, see: Hursthouse et al. (1998, 1999a ,b ); Gelbrich et al. (2008); Davis et al. (1996); Costanzo et al. (1999); Kubicki & Codding (2001);Yathirajan et al. (2005); Denehy et al. (2006); Toumieux et al. (2006). For graph-set analysis, see: Bernstein et al. (1995).graphic file with name e-67-o1551-scheme1.jpg

Experimental

Crystal data

  • C13H14N2O2S

  • M r = 262.32

  • Orthorhombic, Inline graphic

  • a = 7.8426 (1) Å

  • b = 10.5549 (11) Å

  • c = 14.6694 (3) Å

  • V = 1214.30 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.950, T max = 0.962

  • 11460 measured reflections

  • 2364 independent reflections

  • 2312 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.061

  • S = 1.06

  • 2364 reflections

  • 176 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 972 Friedel pairs

  • Flack parameter: −0.01 (5)

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811019490/ez2246sup1.cif

e-67-o1551-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811019490/ez2246Isup2.hkl

e-67-o1551-Isup2.hkl (116.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811019490/ez2246Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H3N⋯O2i 0.87 (2) 2.20 (2) 3.0264 (16) 160 (2)
N1—H2N⋯O1ii 0.89 (2) 2.09 (2) 2.9613 (16) 168 (2)
N1—H1N⋯O2iii 0.86 (1) 2.18 (1) 3.0281 (16) 172 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

TG gratefully acknowledges funding by the Austrian Science Fund (FWF), project M1135-N17.

supplementary crystallographic information

Comment

The title compound (synonyms: proseptazine, septazine, benzylsulfanilamide, chemodyn; CAS No. 104–22–3), first marketed in 1936, was one of the early antibacterial agents of the sulfonamide class (Goissedet et al., 1936; Goissedet & Despois, 1938; Mellon et al., 1938; Long & Bliss, 1939). The C–N–(C6H4)–S fragment of the molecule (see Fig. 1) is essentially planar, and the molecular geometry is characterized by the torsion angles N1–S1–C1–C2 and N2–C7–C8–C9 of 43.6 (1)° and -65.9 (2)°, respectively.

The crystal structure contains three independent intermolecular N—H···O=S bonds which lead to the formation of an H-bonded framework. Each molecule is doubly H-bonded, via its NH2 and sulfonyl groups, to two neighbouring molecules. These interactions generate an N—H···O=S-bonded ladder structure parallel to [100], which consists of fused R22(8) rings (Bernstein et al., 1995) and displays a 21 symmetry. This situation is illustrated in Fig. 2. The same one-dimensional structure has been found previously in only a few other compounds of the sulfonamide class, see Davis et al. (1996); Costanzo et al. (1999); Kubicki & Codding (2001);Yathirajan et al. (2005); Denehy et al. (2006); Toumieux et al. (2006).

The sulfonyl oxygen atom O2 accepts an additional H-bond from the NH group of a neighbouring molecule. This interaction links molecules which are related to one another by a 21 operation parallel to the c-axis (see Fig. 3).

Refinement

All H atoms were identified in a difference map. Secondary CH2 (C—H = 0.99 Å) and aromatic carbon atoms (C—H = 0.95 Å) were positioned geometrically and refined with Uiso = 1.2 Ueq(C). Hydrogen atoms attached to N and O were refined with restrained distances [N—H = 0.88 (2) Å]; and their Uiso parameters were refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size.

Fig. 2.

Fig. 2.

Ladder structure parallel to [100] formed by H-bonds involving the NH2 group. The interactions between the NH group and O2 are indicated by arrows. O and H atoms directly engaged in N–H···O bonds are drawn as balls.

Fig. 3.

Fig. 3.

H-bonded framework structure viewed parallel to the a-axis, with H-bonds indicated by arrows.

Crystal data

C13H14N2O2S F(000) = 552
Mr = 262.32 Dx = 1.435 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6120 reflections
a = 7.8426 (1) Å θ = 2.9–27.5°
b = 10.5549 (11) Å µ = 0.26 mm1
c = 14.6694 (3) Å T = 120 K
V = 1214.30 (13) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.15 mm

Data collection

Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer 2364 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 2312 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 9.091 pixels mm-1 θmax = 26.0°, θmin = 3.2°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −12→13
Tmin = 0.950, Tmax = 0.962 l = −18→18
11460 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.032P)2 + 0.3394P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 0.19 e Å3
2364 reflections Δρmin = −0.30 e Å3
176 parameters Extinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraints Extinction coefficient: 0.021 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 972 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.01 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.88925 (4) 0.14891 (3) 0.47921 (2) 0.00933 (11)
O1 1.04460 (12) 0.09326 (9) 0.51381 (7) 0.0132 (2)
O2 0.73029 (12) 0.08853 (9) 0.50432 (7) 0.0127 (2)
N1 0.88280 (16) 0.29082 (11) 0.51938 (8) 0.0124 (3)
H2N 0.789 (2) 0.3327 (18) 0.5037 (13) 0.027 (5)*
H1N 0.9760 (19) 0.3323 (16) 0.5125 (12) 0.016 (4)*
N2 0.94618 (16) 0.14533 (12) 0.07743 (8) 0.0141 (3)
H3N 0.879 (2) 0.0925 (18) 0.0498 (13) 0.032 (5)*
C1 0.89793 (18) 0.15385 (13) 0.36038 (9) 0.0103 (3)
C2 1.00520 (19) 0.23999 (13) 0.31668 (10) 0.0131 (3)
H2 1.0688 0.2990 0.3518 0.016*
C3 1.01965 (19) 0.24017 (13) 0.22311 (10) 0.0135 (3)
H3 1.0908 0.3008 0.1940 0.016*
C4 0.92945 (17) 0.15099 (14) 0.17015 (9) 0.0110 (3)
C5 0.82057 (18) 0.06548 (14) 0.21519 (10) 0.0115 (3)
H5 0.7574 0.0057 0.1805 0.014*
C6 0.80389 (18) 0.06679 (13) 0.30896 (9) 0.0107 (3)
H6 0.7291 0.0090 0.3383 0.013*
C9 1.15434 (18) 0.09176 (14) −0.09378 (10) 0.0145 (3)
H9 1.2109 0.0486 −0.0456 0.017*
C7 1.03437 (19) 0.24066 (13) 0.02344 (10) 0.0138 (3)
H7A 1.1487 0.2564 0.0497 0.017*
H7B 0.9696 0.3211 0.0251 0.017*
C8 1.05223 (18) 0.19639 (14) −0.07416 (10) 0.0119 (3)
C10 1.1744 (2) 0.04982 (15) −0.18294 (11) 0.0182 (3)
H10 1.2445 −0.0214 −0.1957 0.022*
C11 1.0911 (2) 0.11273 (15) −0.25348 (10) 0.0187 (3)
H11 1.1038 0.0840 −0.3145 0.022*
C12 0.9903 (2) 0.21671 (15) −0.23489 (11) 0.0184 (3)
H12 0.9340 0.2596 −0.2832 0.022*
C13 0.97056 (19) 0.25909 (14) −0.14530 (10) 0.0150 (3)
H13 0.9013 0.3309 −0.1329 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.00952 (18) 0.01096 (17) 0.00751 (17) 0.00004 (13) 0.00065 (13) 0.00008 (13)
O1 0.0124 (5) 0.0159 (5) 0.0115 (5) 0.0029 (4) −0.0014 (4) 0.0013 (4)
O2 0.0118 (5) 0.0143 (5) 0.0120 (5) −0.0022 (4) 0.0026 (4) 0.0015 (4)
N1 0.0110 (6) 0.0127 (6) 0.0136 (6) −0.0003 (5) 0.0009 (6) −0.0031 (5)
N2 0.0181 (6) 0.0152 (6) 0.0090 (6) −0.0072 (5) 0.0009 (5) 0.0005 (5)
C1 0.0105 (6) 0.0132 (7) 0.0073 (6) 0.0018 (6) 0.0007 (5) 0.0008 (5)
C2 0.0137 (7) 0.0134 (7) 0.0122 (7) −0.0033 (6) −0.0011 (6) −0.0012 (6)
C3 0.0145 (7) 0.0136 (7) 0.0125 (7) −0.0049 (6) 0.0011 (6) 0.0017 (6)
C4 0.0117 (6) 0.0116 (6) 0.0099 (6) 0.0011 (6) 0.0000 (5) 0.0004 (6)
C5 0.0109 (7) 0.0114 (6) 0.0123 (6) −0.0016 (5) −0.0006 (5) −0.0019 (6)
C6 0.0106 (7) 0.0099 (6) 0.0117 (6) −0.0007 (5) 0.0008 (5) 0.0006 (6)
C9 0.0132 (7) 0.0150 (7) 0.0154 (7) −0.0002 (6) −0.0015 (5) 0.0027 (6)
C7 0.0167 (7) 0.0139 (7) 0.0109 (7) −0.0039 (6) 0.0016 (6) 0.0016 (6)
C8 0.0117 (7) 0.0128 (6) 0.0112 (7) −0.0047 (5) 0.0002 (5) 0.0006 (6)
C10 0.0176 (8) 0.0158 (7) 0.0212 (8) −0.0008 (6) 0.0041 (6) −0.0029 (6)
C11 0.0220 (8) 0.0236 (8) 0.0105 (7) −0.0104 (6) 0.0039 (6) −0.0030 (6)
C12 0.0187 (8) 0.0236 (8) 0.0129 (8) −0.0059 (6) −0.0035 (6) 0.0058 (6)
C13 0.0128 (7) 0.0175 (8) 0.0146 (7) 0.0006 (6) 0.0002 (6) 0.0029 (6)

Geometric parameters (Å, °)

S1—O1 1.4447 (10) C5—H5 0.9500
S1—O2 1.4477 (10) C6—H6 0.9500
S1—N1 1.6104 (12) C9—C10 1.390 (2)
S1—C1 1.7452 (13) C9—C8 1.394 (2)
N1—H2N 0.889 (15) C9—H9 0.9500
N1—H1N 0.858 (14) C7—C8 1.5126 (19)
N2—C4 1.3677 (17) C7—H7A 0.9900
N2—C7 1.4553 (17) C7—H7B 0.9900
N2—H3N 0.867 (15) C8—C13 1.392 (2)
C1—C2 1.3948 (19) C10—C11 1.392 (2)
C1—C6 1.399 (2) C10—H10 0.9500
C2—C3 1.377 (2) C11—C12 1.380 (2)
C2—H2 0.9500 C11—H11 0.9500
C3—C4 1.411 (2) C12—C13 1.397 (2)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.407 (2) C13—H13 0.9500
C5—C6 1.3817 (19)
O1—S1—O2 117.25 (6) C5—C6—C1 119.57 (13)
O1—S1—N1 106.02 (6) C5—C6—H6 120.2
O2—S1—N1 106.81 (6) C1—C6—H6 120.2
O1—S1—C1 109.28 (6) C10—C9—C8 120.77 (14)
O2—S1—C1 107.51 (6) C10—C9—H9 119.6
N1—S1—C1 109.81 (6) C8—C9—H9 119.6
S1—N1—H2N 113.2 (13) N2—C7—C8 110.22 (11)
S1—N1—H1N 113.9 (12) N2—C7—H7A 109.6
H2N—N1—H1N 114.9 (17) C8—C7—H7A 109.6
C4—N2—C7 123.82 (12) N2—C7—H7B 109.6
C4—N2—H3N 115.7 (14) C8—C7—H7B 109.6
C7—N2—H3N 118.6 (14) H7A—C7—H7B 108.1
C2—C1—C6 119.88 (13) C13—C8—C9 119.09 (14)
C2—C1—S1 120.14 (11) C13—C8—C7 121.35 (13)
C6—C1—S1 119.89 (10) C9—C8—C7 119.56 (13)
C3—C2—C1 120.57 (13) C9—C10—C11 119.64 (14)
C3—C2—H2 119.7 C9—C10—H10 120.2
C1—C2—H2 119.7 C11—C10—H10 120.2
C2—C3—C4 120.44 (13) C12—C11—C10 120.08 (14)
C2—C3—H3 119.8 C12—C11—H11 120.0
C4—C3—H3 119.8 C10—C11—H11 120.0
N2—C4—C5 119.81 (13) C11—C12—C13 120.27 (15)
N2—C4—C3 121.92 (13) C11—C12—H12 119.9
C5—C4—C3 118.27 (13) C13—C12—H12 119.9
C6—C5—C4 121.22 (13) C8—C13—C12 120.15 (14)
C6—C5—H5 119.4 C8—C13—H13 119.9
C4—C5—H5 119.4 C12—C13—H13 119.9
N1—S1—C1—C2 43.59 (14) N2—C7—C8—C9 −65.94 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H3N···O2i 0.87 (2) 2.20 (2) 3.0264 (16) 160.(2)
N1—H2N···O1ii 0.89 (2) 2.09 (2) 2.9613 (16) 168.(2)
N1—H1N···O2iii 0.86 (1) 2.18 (1) 3.0281 (16) 172.(2)

Symmetry codes: (i) −x+3/2, −y, z−1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2246).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  3. Costanzo, M. J., Jaroskova, L., Gauthier, D. A. & Maryanoff, B. E. (1999). Tetrahedron Asymmetry, 10, 689–703.
  4. Davis, F. A., Boyd, R., Zhou, P., Abdul-Malik, N. F. & Carroll, P. J. (1996). Tetrahedron Lett. 37, 3267–3270.
  5. Denehy, E., White, J. M. & Williams, S. J. (2006). Chem. Commun. pp. 314–316. [DOI] [PubMed]
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207. [DOI] [PubMed]
  8. Goissedet, P. E. C. & Despois, R. L. (1938). US Patent 2 111 768.
  9. Goissedet, P., Despois, R., Gailliot, P. & Mayer, R. (1936). C. R. Soc. Biol. 121, 1082–1084.
  10. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Hursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1998). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/158.
  12. Hursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1999a). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/169.
  13. Hursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1999b). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/170.
  14. Kubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 561, 65–70.
  15. Long, P. H. & Bliss, E. A. (1939). The Clinical and Experimental Use of Sulfanilamide, Sulfapyridine and Allied Compounds New York: The Macmillan Company.
  16. Mellon, R. R., Gross, P. & Cooper, F. B. (1938). Sulfanilamide Therapy of Bacterial Infections Springfield, Illinois & Baltimore: Charles C. Thomas.
  17. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: AcademicPress.
  18. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Toumieux, S., Compain, P., Martin, O. R. & Selkti, M. (2006). Org. Lett. 8, 4493–4496. [DOI] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Yathirajan, H. S., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o179–o181. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811019490/ez2246sup1.cif

e-67-o1551-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811019490/ez2246Isup2.hkl

e-67-o1551-Isup2.hkl (116.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811019490/ez2246Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES