Abstract
The susceptibility of rat mast-cell heparin to oxidative degradation was examined. Heparin as a component of intact mast-cell granules (MCG) was degraded following ingestion by normal human neutrophils. In contrast, neutrophils from patients with chronic granulomatous disease (CGD), which do not respond to stimulation with respiratory-burst activity, exhibited a greatly diminished ability to degrade phagocytosed MCG heparin. MCG-associated heparin also was cleaved by H2O2 plus Fe2+ (Fenton's reagent). Isolated heparin proteoglycan (average Mr approx. 750,000) was rapidly cleaved to smaller molecules similar in size to commercial pig heparin upon exposure to Fenton's reagent. This cleavage was inhibited by catalase and by the hydroxyl-radical (OH.)-scavenger mannitol, but not by superoxide dismutase (SOD). The cleavage products retained approx. 26% of the anticoagulant activity of the native molecule. The heparin proteoglycan was also cleaved by acetaldehyde/xanthine oxidase/FeSO4, a system that generates superoxide (O2.-), H2O2 and OH.. Whereas the cleavage at relatively high iron ion concentrations was inhibited by catalase and mannitol but not by SOD, at lower iron ion concentrations the cleavage was inhibited by catalase, mannitol and SOD. These findings suggest the involvement of OH., which at high Fe2+ concentrations is generated by Fenton's reagent (H2O2 plus Fe2+), and at low iron ion concentrations is generated by the iron-ion-catalysed interaction between O2.- and H2O2 (Haber-Weiss reaction). These studies suggest that oxygen radicals generated by activated phagocytes may contribute to the degradation in vivo of both solubilized and granule-associated proteoglycan heparin.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkins F. M., Friedman M. M., Metcalfe D. D. Biochemical and microscopic evidence for the internalization and degradation of heparin-containing mast cell granules by bovine endothelial cells. Lab Invest. 1985 Mar;52(3):278–286. [PubMed] [Google Scholar]
- Atkins F. M., Metcalfe D. D. Degradation of the heparin matrix of mast cell granules by cultured fibroblasts. J Immunol. 1983 Sep;131(3):1420–1425. [PubMed] [Google Scholar]
- BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
- Baggiolini M., Horisberger U., Martin U. Phagocytosis of mast cell granules by mononuclear phagocytes, neutrophils and eosinophils during anaphylaxis. Int Arch Allergy Appl Immunol. 1982;67(3):219–226. doi: 10.1159/000233022. [DOI] [PubMed] [Google Scholar]
- Bland C. E., Ginsburg H., Silbert J. E., Metcalfe D. D. Mouse heparin proteoglycan. Synthesis by mast cell-fibroblast monolayers during lymphocyte-dependent mast cell proliferation. J Biol Chem. 1982 Aug 10;257(15):8661–8666. [PubMed] [Google Scholar]
- Britigan B. E., Rosen G. M., Chai Y., Cohen M. S. Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry. J Biol Chem. 1986 Apr 5;261(10):4426–4431. [PubMed] [Google Scholar]
- Britigan B. E., Rosen G. M., Thompson B. Y., Chai Y., Cohen M. S. Stimulated human neutrophils limit iron-catalyzed hydroxyl radical formation as detected by spin-trapping techniques. J Biol Chem. 1986 Dec 25;261(36):17026–17032. [PubMed] [Google Scholar]
- Fabian I., Bleiberg I., Aronson M. Desulphation of heparin by mice and guinea pig leukocytes. Biochim Biophys Acta. 1976 Jun 23;437(1):122–128. doi: 10.1016/0304-4165(76)90353-6. [DOI] [PubMed] [Google Scholar]
- Greenwald R. A., Moy W. W. Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum. 1980 Apr;23(4):455–463. doi: 10.1002/art.1780230408. [DOI] [PubMed] [Google Scholar]
- Henderson W. R., Kaliner M. Immunologic and nonimmunologic generation of superoxide from mast cells and basophils. J Clin Invest. 1978 Jan;61(1):187–196. doi: 10.1172/JCI108917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horner A. A. Heterogeneity of rat skin heparin chains with high affinity for antithrombin. Biochem J. 1987 Jun 15;244(3):693–698. doi: 10.1042/bj2440693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horner A. A. Macromolecular heparin from rat skin. Isolation, characterization, and depolymerization with ascorbate. J Biol Chem. 1971 Jan 10;246(1):231–239. [PubMed] [Google Scholar]
- Horner A. A., Young E. Asymmetric distribution of sites with high affinity for antithrombin III in rat skin heparin proteoglycans. J Biol Chem. 1982 Aug 10;257(15):8749–8754. [PubMed] [Google Scholar]
- Iozzo R. V., Marroquin R., Wight T. N. Analysis of proteoglycans by high-performance liquid chromatography: a rapid micromethod for the separation of proteoglycans from tissue and cell culture. Anal Biochem. 1982 Oct;126(1):190–199. doi: 10.1016/0003-2697(82)90128-2. [DOI] [PubMed] [Google Scholar]
- JAQUES L. B., MONKHOUSE F. C., STEWART M. A method for the determination of heparin in blood. J Physiol. 1949 Aug;109(1-2):41–48. doi: 10.1113/jphysiol.1949.sp004367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan A. P., Austen K. F. A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin. J Exp Med. 1971 Apr 1;133(4):696–712. doi: 10.1084/jem.133.4.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kazatchkine M. D., Fearon D. T., Metcalfe D. D., Rosenberg R. D., Austen K. F. Structural determinants of the capacity of heparin to inhibit the formation of the human amplification C3 convertase. J Clin Invest. 1981 Jan;67(1):223–228. doi: 10.1172/JCI110017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kjellén L., Pertoft H., Oldberg A., Hök M. Oligosaccharides generated by an endoglucuronidase are intermediates in the intracellular degradation of heparan sulfate proteoglycans. J Biol Chem. 1985 Jul 15;260(14):8416–8422. [PubMed] [Google Scholar]
- Klebanoff S. J. Iodination catalyzed by the xanthine oxidase system: role of hydroxyl radicals. Biochemistry. 1982 Aug 17;21(17):4110–4116. doi: 10.1021/bi00260a030. [DOI] [PubMed] [Google Scholar]
- Kresse H., Glössl J. Glycosaminoglycan degradation. Adv Enzymol Relat Areas Mol Biol. 1987;60:217–311. doi: 10.1002/9780470123065.ch4. [DOI] [PubMed] [Google Scholar]
- Lam L. H., Silbert J. E., Rosenberg R. D. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun. 1976 Mar 22;69(2):570–577. doi: 10.1016/0006-291x(76)90558-1. [DOI] [PubMed] [Google Scholar]
- Leonard E. J., Roberts R. L., Skeel A. Purification of human blood basophils by single step isopycnic banding on Percoll. J Leukoc Biol. 1984 Feb;35(2):169–177. doi: 10.1002/jlb.35.2.169. [DOI] [PubMed] [Google Scholar]
- Lindahl U., Pertoft H., Seljelid R. Uptake and degradation of mast-cell granules by mouse peritoneal macrophages. Biochem J. 1979 Jul 15;182(1):189–193. doi: 10.1042/bj1820189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann P. R. An electron-microscope study of the relations between mast cells and eosinophil leucocytes. J Pathol. 1969 Jul;98(3):183–186. doi: 10.1002/path.1710980304. [DOI] [PubMed] [Google Scholar]
- Matsumura G., Pigman W. Catalytic role of copper and iron ions in the depolymerization of hyaluronic acid by ascorbic acid. Arch Biochem Biophys. 1965 Jun;110(3):526–533. doi: 10.1016/0003-9861(65)90446-7. [DOI] [PubMed] [Google Scholar]
- McCord J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science. 1974 Aug 9;185(4150):529–531. doi: 10.1126/science.185.4150.529. [DOI] [PubMed] [Google Scholar]
- Metcalfe D. D., Lewis R. A., Silbert J. E., Rosenberg R. D., Wasserman S. I., Austen K. F. Isolation and characterization of heparin from human lung. J Clin Invest. 1979 Dec;64(6):1537–1543. doi: 10.1172/JCI109613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metcalfe D. D., Smith J. A., Austen K. F., Silbert J. E. Polydispersity of rat mast cell heparin. Implications for proteoglycan assembly. J Biol Chem. 1980 Dec 25;255(24):11753–11758. [PubMed] [Google Scholar]
- Ogren S., Lindahl U. Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem. 1975 Apr 10;250(7):2690–2697. [PubMed] [Google Scholar]
- PIGMAN W., RIZVI S., HOLLEY H. L. Depolymerization of hyaluronic acid by the ORD reaction. Arthritis Rheum. 1961 Jun;4:240–252. doi: 10.1002/art.1780040303. [DOI] [PubMed] [Google Scholar]
- Pou S., Cohen M. S., Britigan B. E., Rosen G. M. Spin-trapping and human neutrophils. Limits of detection of hydroxyl radical. J Biol Chem. 1989 Jul 25;264(21):12299–12302. [PubMed] [Google Scholar]
- Raphael G. D., Henderson W. R., Kaliner M. Isolation of membrane-bound rat mast cell granules. Exp Cell Res. 1978 Sep;115(2):428–431. doi: 10.1016/0014-4827(78)90300-2. [DOI] [PubMed] [Google Scholar]
- Roberts C. R., Roughley P. J., Mort J. S. Degradation of human proteoglycan aggregate induced by hydrogen peroxide. Protein fragmentation, amino acid modification and hyaluronic acid cleavage. Biochem J. 1989 May 1;259(3):805–811. doi: 10.1042/bj2590805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson H. C., Horner A. A., Hök M., Ogren S., Lindahl U. A proteoglycan form of heparin and its degradation to single-chain molecules. J Biol Chem. 1978 Oct 10;253(19):6687–6693. [PubMed] [Google Scholar]
- Rosen H., Klebanoff S. J. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte. J Exp Med. 1979 Jan 1;149(1):27–39. doi: 10.1084/jem.149.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosen H., Klebanoff S. J. Role of iron and ethylenediaminetetraacetic acid in the bactericidal activity of a superoxide anion-generating system. Arch Biochem Biophys. 1981 May;208(2):512–519. doi: 10.1016/0003-9861(81)90539-7. [DOI] [PubMed] [Google Scholar]
- SMITH D. E., LEWIS Y. S. Phagocytosis of granules from disrupted mast cells. Anat Rec. 1958 Sep;132(1):93–111. doi: 10.1002/ar.1091320107. [DOI] [PubMed] [Google Scholar]
- Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
- Samuni A., Black C. D., Krishna C. M., Malech H. L., Bernstein E. F., Russo A. Hydroxyl radical production by stimulated neutrophils reappraised. J Biol Chem. 1988 Sep 25;263(27):13797–13801. [PubMed] [Google Scholar]
- Samuni A., Carmichael A. J., Russo A., Mitchell J. B., Riesz P. On the spin trapping and ESR detection of oxygen-derived radicals generated inside cells. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7593–7597. doi: 10.1073/pnas.83.20.7593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slorach S. A. Histamine and heparin release from isolated rat mast cells exposed to compound 48-80. Acta Physiol Scand. 1971 May;82(1):91–97. doi: 10.1111/j.1748-1716.1971.tb04945.x. [DOI] [PubMed] [Google Scholar]
- Sugisaka N., Petracek F. J. Rapid molecular size characterization of heparins by high pressure liquid chromatography. Fed Proc. 1977 Jan;36(1):89–92. [PubMed] [Google Scholar]
- Sullivan T. J., Parker K. L., Stenson W., Parker C. W. Modulation of cyclic AMP in purified rat mast cells. I. Responses to pharmacologic, metabolic, and physical stimuli. J Immunol. 1975 May;114(5):1473–1479. [PubMed] [Google Scholar]
- Thompson H. L., Schulman E. S., Metcalfe D. D. Identification of chondroitin sulfate E in human lung mast cells. J Immunol. 1988 Apr 15;140(8):2708–2713. [PubMed] [Google Scholar]
- Thunberg L., Bäckström G., Wasteson A., Robinson H. C., Ogren S., Lindahl U. Enzymatic depolymerization of heparin-related polysaccharides. Substrate specificities of mouse mastocytoma and human platelet endo-beta-D-glucuronidases. J Biol Chem. 1982 Sep 10;257(17):10278–10282. [PubMed] [Google Scholar]
- Weiler J. M., Yurt R. W., Fearon D. T., Austen K. F. Modulation of the formation of the amplification convertase of complement, C3b, Bb, by native and commercial heparin. J Exp Med. 1978 Feb 1;147(2):409–421. doi: 10.1084/jem.147.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong S. F., Halliwell B., Richmond R., Skowroneck W. R. The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J Inorg Biochem. 1981 Apr;14(2):127–134. doi: 10.1016/s0162-0134(00)80033-1. [DOI] [PubMed] [Google Scholar]
- Yurt R. W., Leid R. W., Jr, Austen K. F. Native heparin from rat peritoneal mast cells. J Biol Chem. 1977 Jan 25;252(2):518–521. [PubMed] [Google Scholar]
- Yurt R. W., Leid R. W., Jr, Spragg J., Austen K. F. Immunologic release of heparin from purified rat peritoneal mast cells. J Immunol. 1977 Apr;118(4):1201–1207. [PubMed] [Google Scholar]
- Yurt R., Austen K. F. Preparative purification of the rat mast cell chymase: characterization and interaction with granule components. J Exp Med. 1977 Nov 1;146(5):1405–1419. doi: 10.1084/jem.146.5.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]