Abstract
The specificity for and function of monoclonal antibodies against Tritrichomonas foetus were characterized. Four monoclonal antibodies generated by immunization of mice with live T. foetus were selected on the basis of enzyme-linked immunosorbent assay reactions. The approximate molecular masses of the predominant proteins were determined by Western blotting (immunoblotting). Monoclonal antibody TF3.8 recognized a predominant band at approximately 155 kilodaltons, whereas TF3.2 reacted with several bands. Monoclonal antibodies TF1.17 and TF1.15 recognized broad bands between 45 and 75 kilodaltons. The first two antibodies (TF3.8 and TF3.2) did not react with the surface of T. foetus, as determined by live-cell immunofluorescence, agglutination, and immobilization, whereas two other monoclonal antibodies (TF1.17 and TF1.15) did react with surface epitopes, as determined by these criteria. The latter two monoclonal antibodies also mediated complement-dependent killing of T. foetus and prevented of adherence of organisms to bovine vaginal epithelial cells. One antibody, TF1.15, also killed in the absence of complement. Since these functions are in vitro correlates of protection, the antigens recognized by these monoclonal antibodies may induce protective immunity.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Shaikhaly M. H., Nedergaard J., Cannon B. Sodium-induced calcium release from mitochondria in brown adipose tissue. Proc Natl Acad Sci U S A. 1979 May;76(5):2350–2353. doi: 10.1073/pnas.76.5.2350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alderete J. F., Garza G. E. Identification and properties of Trichomonas vaginalis proteins involved in cytadherence. Infect Immun. 1988 Jan;56(1):28–33. doi: 10.1128/iai.56.1.28-33.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alderete J. F., Kasmala L. Monoclonal antibody to a major glycoprotein immunogen mediates differential complement-independent lysis of Trichomonas vaginalis. Infect Immun. 1986 Sep;53(3):697–699. doi: 10.1128/iai.53.3.697-699.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aydintug M. K., Leid R. W., Widders P. R. Antibody enhances killing of Tritrichomonas foetus by the alternative bovine complement pathway. Infect Immun. 1990 Apr;58(4):944–948. doi: 10.1128/iai.58.4.944-948.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess D. E. Clonal and geographic distribution of a surface antigen of Tritrichomonas foetus. J Protozool. 1988 Feb;35(1):119–122. doi: 10.1111/j.1550-7408.1988.tb04090.x. [DOI] [PubMed] [Google Scholar]
- Burgess D. E. Tritrichomonas foetus: preparation of monoclonal antibodies with effector function. Exp Parasitol. 1986 Oct;62(2):266–274. doi: 10.1016/0014-4894(86)90031-7. [DOI] [PubMed] [Google Scholar]
- Clark B. L., Dufty J. H., Parsonson I. M. Immunisation of bulls against trichomoniasis. Aust Vet J. 1983 Jun;60(6):178–179. doi: 10.1111/j.1751-0813.1983.tb05957.x. [DOI] [PubMed] [Google Scholar]
- Clark B. L., Emery D. L., Dufty J. H. Therapeutic immunisation of bulls with the membranes and glycoproteins of Tritrichomonas foetus var. brisbane. Aust Vet J. 1984 Feb;61(2):65–66. doi: 10.1111/j.1751-0813.1984.tb07197.x. [DOI] [PubMed] [Google Scholar]
- Corbeil L. B., Duncan J. R., Schurig G. G., Hall C. E., Winter A. J. Bovine venereal vibriosis: variations in immunoglobulin class of antibodies in genital secretions and serum. Infect Immun. 1974 Nov;10(5):1084–1090. doi: 10.1128/iai.10.5.1084-1090.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbeil L. B., Hodgson J. L., Jones D. W., Corbeil R. R., Widders P. R., Stephens L. R. Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells. Infect Immun. 1989 Jul;57(7):2158–2165. doi: 10.1128/iai.57.7.2158-2165.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gander J. E. Gel protein stains: glycoproteins. Methods Enzymol. 1984;104:447–451. doi: 10.1016/s0076-6879(84)04112-4. [DOI] [PubMed] [Google Scholar]
- Gillin F. D., Sher A. Activation of the alternative complement pathway by Trichomonas vaginalis. Infect Immun. 1981 Oct;34(1):268–273. doi: 10.1128/iai.34.1.268-273.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodger W. J., Skirrow S. Z. Epidemiologic and economic analyses of an unusually long epizootic of trichomoniasis in a large California dairy herd. J Am Vet Med Assoc. 1986 Oct 1;189(7):772–776. [PubMed] [Google Scholar]
- Hall M. R., Huang J. C., Ota R., Redelman D., Hanks D., Taylor R. E. Characterization of Tritrichomonas foetus antigens, using bovine antiserum. Am J Vet Res. 1986 Dec;47(12):2549–2553. [PubMed] [Google Scholar]
- Holbrook T. W., Boackle R. J., Vesely J., Parker B. W. Trichomonas vaginalis: alternative pathway activation of complement. Trans R Soc Trop Med Hyg. 1982;76(4):473–475. doi: 10.1016/0035-9203(82)90140-7. [DOI] [PubMed] [Google Scholar]
- Huang J. C., Hanks D., Kvasnicka W., Hanks M., Hall M. R. Antigenic relationship among field isolates of Tritrichomonas foetus from cattle. Am J Vet Res. 1989 Jul;50(7):1064–1068. [PubMed] [Google Scholar]
- Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
- Kvasnicka W. G., Taylor R. E., Huang J. C., Hanks D., Tronstad R. J., Bosomworth A., Hall M. R. Investigations of the incidence of bovine trichomoniasis in nevada and of the efficacy of immunizing cattle with vaccines containing Tritrichomonas foetus. Theriogenology. 1989 May;31(5):963–971. doi: 10.1016/0093-691x(89)90479-2. [DOI] [PubMed] [Google Scholar]
- LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Parsonson I. M., Clark B. L., Dufty J. H. Early pathogenesis and pathology of Tritrichomonas foetus infection in virgin heifers. J Comp Pathol. 1976 Jan;86(1):59–66. doi: 10.1016/0021-9975(76)90028-1. [DOI] [PubMed] [Google Scholar]
- Parsonson I. M., Clark B. L., Dufty J. The pathogenesis of Tritrichomonas foetus infection in the bull. Aust Vet J. 1974 Oct;50(10):421–423. doi: 10.1111/j.1751-0813.1974.tb06861.x. [DOI] [PubMed] [Google Scholar]
- Rae D. O. Impact of trichomoniasis on the cow-calf producer's profitability. J Am Vet Med Assoc. 1989 Mar 15;194(6):771–775. [PubMed] [Google Scholar]
- Riffkin G. G., Hucker D. A., McLoed I. K. Water deprivation in agisted cattle. Aust Vet J. 1981 Nov;57(11):532–533. doi: 10.1111/j.1751-0813.1981.tb05801.x. [DOI] [PubMed] [Google Scholar]
- Skirrow S. Z., BonDurant R. H. Induced Tritrichomonas foetus infection in beef heifers. J Am Vet Med Assoc. 1990 Mar 15;196(6):885–889. [PubMed] [Google Scholar]
- Woodward M. P., Young W. W., Jr, Bloodgood R. A. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods. 1985 Apr 8;78(1):143–153. doi: 10.1016/0022-1759(85)90337-0. [DOI] [PubMed] [Google Scholar]


