Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 2;67(Pt 12):m1647. doi: 10.1107/S1600536811044977

Poly[tetra­kis­(μ-benzene-1,2-dicarboxyl­ato)di-μ-formato-penta­strontium(II)]

Pei-Chi Cheng a, Jun-Xiang Zhan b, Cheng-You Wu b, Chia-Her Lin b,*
PMCID: PMC3238585  PMID: 22199476

Abstract

The asymmetric unit of the title complex, [Sr5(C8H4O4)4(HCO2)2]n, contains three independent SrII ions, one of which is located on an inversion center. In the crystal, the SrII ions (coordination numbers 8, 9 and 12) are connected by two crystallographically distinct benzene-1,2-dicarboxyl­ate ligands and one formate ligand, forming a two-dimensional polymer parallel to (001).

Related literature

For general background to metal coordination polymers, see: Kitagawa et al. (2004). For related structures, see: Stein & Ruschewitz (2005); Zhang et al. (2009); Wang et al. (2010). graphic file with name e-67-m1647-scheme1.jpg

Experimental

Crystal data

  • [Sr5(C8H4O4)4(HCO2)2]

  • M r = 1184.58

  • Triclinic, Inline graphic

  • a = 7.0292 (3) Å

  • b = 10.2892 (4) Å

  • c = 12.5439 (5) Å

  • α = 91.361 (2)°

  • β = 90.407 (2)°

  • γ = 104.998 (2)°

  • V = 876.00 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.65 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.310, T max = 0.393

  • 15465 measured reflections

  • 4295 independent reflections

  • 3585 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.060

  • S = 1.04

  • 4295 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811044977/lh5360sup1.cif

e-67-m1647-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044977/lh5360Isup2.hkl

e-67-m1647-Isup2.hkl (210.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by National Science Council, Taiwan (NSC99–2113-M-033–005-MY2) and by the Center-of-Excellence (COE) Program on Membrane Technology of the Ministry of Education (MOE).

supplementary crystallographic information

Comment

The increasingly rapid development of metal coordination polymers over the past two decades has attracted considerable attention due to their structural diversity and important applications (Kitagawa et al., 2004). benzene-1,2-dicarboxylate acid (H2BDC) has been successively applied to construct to strontium (Stein & Ruschewitz, 2005), lead (Zhang et al., 2009), and tin complexes (Wang et al., 2010). Here we report the crystal structure of the title complex.

The title compound contains three crystallographically independent SrII ions, with coordination numbers 12 (Sr1, located on an inversion center), 8 (Sr2) and 9 (Sr3). The Sr—O distances range from 2.467 (2) to 2.9332 (19) Å. The coordination geometry of the Sr(II) ions is shown in Fig. 1. In the crystal, the SrII ions are connected by two crystallographically distinct benzene-1,2-dicarboxylate ligands and one formate ligand, to form a two-dimensional polymer parallel to (001) [Fig. 2].

Experimental

Solvothermal reactions were carried out at 423 K for 2 d in a Teflon-lined acid digestion bomb with an internal volume of 23 ml followed by slow cooling at 6 K/h to room temperature. A single-phase product consisting of transparent colorless crystals of was obtained from a mixture of Sr(NO3)2 (0.0847 g,0.4 mmol), H2ortho-BDC (0.0332 g, 0.2 mmol), DMF (5.0 ml) and H2O (1.0 ml).

Refinement

H atoms were placed in ideal geometries, with C—H = 0.93 Å and Uiso(H)= 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Part of the title structure, showing 50% probability displacement ellipsoids. [symmetry codes: (i) 1 - x, -y, -z; (ii) 1 + x, y, z; (iii) 2 - x, -y, -z; (iv) 1 - x, -1 - y, -z; (v) 2 - x, -1 - y, -z; (vi) x, 1 + y, z].

Fig. 2.

Fig. 2.

The layer structure of the title compound viewed along the c axis.

Crystal data

[Sr5(C8H4O4)4(HCO2)2] Z = 1
Mr = 1184.58 F(000) = 572
Triclinic, P1 Dx = 2.245 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0292 (3) Å Cell parameters from 8942 reflections
b = 10.2892 (4) Å θ = 2.6–28.3°
c = 12.5439 (5) Å µ = 7.65 mm1
α = 91.361 (2)° T = 295 K
β = 90.407 (2)° Lamellar, colorless
γ = 104.998 (2)° 0.20 × 0.18 × 0.15 mm
V = 876.00 (6) Å3

Data collection

Bruker APEXII CCD diffractometer 4295 independent reflections
Radiation source: fine-focus sealed tube 3585 reflections with I > 2σ(I)
graphite Rint = 0.033
Detector resolution: 8.3333 pixels mm-1 θmax = 28.3°, θmin = 1.6°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2010) k = −13→13
Tmin = 0.310, Tmax = 0.393 l = −16→16
15465 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.4547P] where P = (Fo2 + 2Fc2)/3
4295 reflections (Δ/σ)max = 0.001
268 parameters Δρmax = 0.97 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sr1 1.0000 0.0000 0.0000 0.01600 (9)
Sr2 0.86724 (3) −0.37889 (2) −0.11377 (2) 0.01683 (7)
Sr3 0.57129 (3) 0.21010 (2) −0.05482 (2) 0.01681 (7)
O1 0.6246 (3) −0.05156 (18) −0.08904 (15) 0.0184 (4)
O2 0.8372 (3) −0.14323 (19) −0.17205 (16) 0.0219 (4)
O3 0.2714 (3) 0.03708 (19) −0.14874 (16) 0.0227 (4)
O4 0.1994 (3) −0.17952 (19) −0.11074 (16) 0.0209 (4)
O5 0.7838 (3) −0.26762 (19) 0.05581 (15) 0.0215 (4)
O6 1.0850 (3) −0.18764 (19) 0.12185 (17) 0.0254 (5)
O7 0.5072 (3) −0.61995 (19) 0.10329 (16) 0.0233 (4)
O8 0.8151 (3) −0.54513 (18) 0.05059 (15) 0.0190 (4)
O9 0.6767 (3) −0.6166 (2) −0.19012 (17) 0.0274 (5)
O10 0.8059 (4) −0.4615 (3) −0.30783 (19) 0.0432 (6)
C1 0.6836 (4) −0.1025 (3) −0.1717 (2) 0.0168 (6)
C2 0.5647 (4) −0.1157 (3) −0.2734 (2) 0.0178 (6)
C3 0.6460 (4) −0.1431 (3) −0.3689 (2) 0.0268 (7)
H3A 0.7758 −0.1489 −0.3701 0.032*
C4 0.5356 (5) −0.1618 (3) −0.4624 (3) 0.0316 (7)
H4A 0.5917 −0.1788 −0.5265 0.038*
C5 0.3424 (5) −0.1553 (3) −0.4603 (3) 0.0327 (8)
H5A 0.2678 −0.1684 −0.5231 0.039*
C6 0.2587 (4) −0.1293 (3) −0.3652 (3) 0.0292 (7)
H6A 0.1279 −0.1256 −0.3643 0.035*
C7 0.3690 (4) −0.1087 (3) −0.2717 (2) 0.0184 (6)
C8 0.2747 (4) −0.0818 (3) −0.1693 (2) 0.0172 (6)
C9 0.9131 (4) −0.2604 (3) 0.1291 (2) 0.0166 (6)
C10 0.8555 (4) −0.3394 (3) 0.2271 (2) 0.0183 (6)
C11 0.9164 (4) −0.2784 (3) 0.3253 (3) 0.0280 (7)
H11A 0.9963 −0.1909 0.3287 0.034*
C12 0.8602 (5) −0.3458 (3) 0.4187 (3) 0.0336 (8)
H12A 0.9028 −0.3042 0.4843 0.040*
C13 0.7407 (5) −0.4750 (3) 0.4136 (3) 0.0343 (8)
H13A 0.7023 −0.5208 0.4760 0.041*
C14 0.6777 (4) −0.5367 (3) 0.3161 (3) 0.0275 (7)
H14A 0.5956 −0.6236 0.3136 0.033*
C15 0.7349 (4) −0.4711 (3) 0.2222 (2) 0.0180 (6)
C16 0.6787 (4) −0.5489 (3) 0.1181 (2) 0.0159 (6)
C17 0.7073 (5) −0.5772 (4) −0.2845 (3) 0.0377 (8)
H17A 0.6537 −0.6374 −0.3400 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sr1 0.01285 (16) 0.01455 (18) 0.0203 (2) 0.00311 (13) −0.00091 (13) 0.00027 (15)
Sr2 0.01502 (12) 0.01474 (13) 0.02072 (15) 0.00390 (10) 0.00023 (10) 0.00003 (10)
Sr3 0.01324 (12) 0.01526 (13) 0.02143 (15) 0.00273 (9) 0.00058 (10) 0.00130 (10)
O1 0.0151 (9) 0.0180 (10) 0.0201 (11) 0.0006 (8) −0.0004 (8) −0.0016 (8)
O2 0.0151 (9) 0.0235 (11) 0.0280 (12) 0.0065 (8) −0.0020 (8) 0.0008 (9)
O3 0.0229 (10) 0.0179 (10) 0.0287 (12) 0.0080 (8) −0.0001 (9) −0.0042 (9)
O4 0.0140 (9) 0.0210 (10) 0.0263 (12) 0.0015 (8) 0.0003 (8) 0.0058 (9)
O5 0.0269 (10) 0.0175 (10) 0.0216 (11) 0.0086 (8) −0.0045 (8) −0.0001 (8)
O6 0.0189 (10) 0.0213 (11) 0.0352 (13) 0.0027 (8) 0.0041 (9) 0.0083 (9)
O7 0.0153 (9) 0.0236 (11) 0.0287 (12) 0.0013 (8) −0.0013 (8) −0.0036 (9)
O8 0.0186 (9) 0.0184 (10) 0.0213 (11) 0.0065 (8) 0.0053 (8) 0.0022 (8)
O9 0.0330 (12) 0.0234 (11) 0.0267 (13) 0.0084 (9) −0.0005 (9) 0.0044 (10)
O10 0.0558 (16) 0.0426 (15) 0.0303 (14) 0.0106 (13) 0.0049 (12) 0.0044 (12)
C1 0.0116 (12) 0.0135 (13) 0.0230 (16) −0.0008 (10) 0.0000 (11) 0.0018 (12)
C2 0.0172 (13) 0.0157 (13) 0.0198 (15) 0.0031 (11) −0.0012 (11) −0.0003 (11)
C3 0.0213 (14) 0.0315 (17) 0.0276 (18) 0.0070 (13) 0.0027 (13) −0.0010 (14)
C4 0.0345 (18) 0.041 (2) 0.0199 (17) 0.0101 (15) 0.0023 (13) −0.0011 (15)
C5 0.0356 (18) 0.043 (2) 0.0197 (17) 0.0106 (15) −0.0081 (14) −0.0037 (15)
C6 0.0212 (14) 0.0410 (19) 0.0272 (18) 0.0119 (13) −0.0062 (12) −0.0037 (15)
C7 0.0169 (13) 0.0144 (13) 0.0238 (16) 0.0038 (11) 0.0010 (11) 0.0003 (12)
C8 0.0085 (11) 0.0192 (14) 0.0243 (16) 0.0046 (10) −0.0050 (10) −0.0009 (12)
C9 0.0193 (13) 0.0128 (13) 0.0194 (15) 0.0072 (11) 0.0027 (11) −0.0014 (11)
C10 0.0169 (13) 0.0180 (14) 0.0193 (15) 0.0035 (11) −0.0010 (11) −0.0004 (12)
C11 0.0282 (16) 0.0227 (16) 0.0287 (18) −0.0007 (13) −0.0039 (13) −0.0041 (14)
C12 0.0386 (19) 0.038 (2) 0.0212 (18) 0.0048 (15) −0.0021 (14) −0.0069 (15)
C13 0.0440 (19) 0.0368 (19) 0.0199 (18) 0.0057 (16) 0.0035 (15) 0.0068 (15)
C14 0.0295 (16) 0.0211 (15) 0.0293 (18) 0.0019 (13) 0.0020 (13) 0.0021 (14)
C15 0.0144 (12) 0.0196 (14) 0.0199 (15) 0.0043 (11) 0.0018 (11) −0.0003 (12)
C16 0.0172 (13) 0.0129 (13) 0.0194 (15) 0.0071 (10) −0.0019 (11) 0.0023 (11)
C17 0.0385 (19) 0.037 (2) 0.039 (2) 0.0135 (16) 0.0002 (16) −0.0016 (17)

Geometric parameters (Å, °)

Sr1—O3i 2.641 (2) O6—C9 1.251 (3)
Sr1—O3ii 2.641 (2) O6—Sr3iii 2.6281 (19)
Sr1—O2iii 2.661 (2) O7—C16 1.248 (3)
Sr1—O2 2.661 (2) O7—Sr2iv 2.6335 (18)
Sr1—O6iii 2.6729 (19) O7—Sr3viii 2.729 (2)
Sr1—O6 2.6729 (19) O8—C16 1.277 (3)
Sr1—O1 2.7742 (17) O8—Sr2v 2.6710 (18)
Sr1—O1iii 2.7742 (17) O8—Sr3viii 2.9331 (19)
Sr1—O5iii 2.8848 (19) O9—C17 1.262 (4)
Sr1—O5 2.8848 (19) O9—Sr3viii 2.467 (2)
Sr1—O4i 2.9242 (19) O10—C17 1.256 (4)
Sr1—O4ii 2.9242 (19) C1—C2 1.504 (4)
Sr2—O5 2.536 (2) C2—C3 1.384 (4)
Sr2—O10 2.556 (2) C2—C7 1.396 (4)
Sr2—O2 2.6087 (19) C3—C4 1.384 (4)
Sr2—O9 2.620 (2) C3—H3A 0.9300
Sr2—O7iv 2.6335 (18) C4—C5 1.378 (4)
Sr2—O8v 2.6710 (18) C4—H4A 0.9300
Sr2—O8 2.6766 (18) C5—C6 1.384 (5)
Sr2—O4ii 2.6789 (18) C5—H5A 0.9300
Sr3—O9vi 2.467 (2) C6—C7 1.383 (4)
Sr3—O1i 2.6128 (19) C6—H6A 0.9300
Sr3—O6iii 2.6281 (19) C7—C8 1.502 (4)
Sr3—O3 2.6314 (19) C8—Sr1vii 3.125 (3)
Sr3—O4i 2.6938 (19) C8—Sr3i 3.420 (3)
Sr3—O5i 2.7104 (18) C9—C10 1.490 (4)
Sr3—O7vi 2.729 (2) C10—C11 1.383 (4)
Sr3—O1 2.8361 (19) C10—C15 1.400 (4)
Sr3—O8vi 2.9332 (19) C11—C12 1.382 (4)
O1—C1 1.271 (3) C11—H11A 0.9300
O1—Sr3i 2.6129 (19) C12—C13 1.376 (5)
O2—C1 1.255 (3) C12—H12A 0.9300
O3—C8 1.250 (3) C13—C14 1.380 (4)
O3—Sr1vii 2.641 (2) C13—H13A 0.9300
O4—C8 1.264 (3) C14—C15 1.382 (4)
O4—Sr2vii 2.6789 (18) C14—H14A 0.9300
O4—Sr3i 2.6938 (19) C15—C16 1.510 (4)
O4—Sr1vii 2.9242 (19) C16—Sr3viii 3.190 (3)
O5—C9 1.275 (3) C17—H17A 0.9300
O5—Sr3i 2.7104 (18)
O3i—Sr1—O3ii 180.00 (9) O3—Sr3—O1 65.33 (5)
O3i—Sr1—O2iii 72.69 (6) O4i—Sr3—O1 76.04 (6)
O3ii—Sr1—O2iii 107.31 (6) O5i—Sr3—O1 124.22 (5)
O3i—Sr1—O2 107.31 (6) O7vi—Sr3—O1 141.68 (6)
O3ii—Sr1—O2 72.69 (6) O9vi—Sr3—O8vi 71.45 (6)
O2iii—Sr1—O2 180.0 O1i—Sr3—O8vi 109.25 (5)
O3i—Sr1—O6iii 103.66 (6) O6iii—Sr3—O8vi 82.40 (6)
O3ii—Sr1—O6iii 76.34 (6) O3—Sr3—O8vi 161.74 (5)
O2iii—Sr1—O6iii 102.22 (6) O4i—Sr3—O8vi 62.49 (5)
O2—Sr1—O6iii 77.78 (6) O5i—Sr3—O8vi 100.39 (5)
O3i—Sr1—O6 76.34 (6) O7vi—Sr3—O8vi 45.82 (5)
O3ii—Sr1—O6 103.66 (6) O1—Sr3—O8vi 132.73 (5)
O2iii—Sr1—O6 77.78 (6) O9vi—Sr3—C16vi 86.49 (7)
O2—Sr1—O6 102.22 (6) O1i—Sr3—C16vi 89.85 (6)
O6iii—Sr1—O6 180.0 O6iii—Sr3—C16vi 104.15 (6)
O3i—Sr1—O1 68.69 (6) O3—Sr3—C16vi 142.52 (6)
O3ii—Sr1—O1 111.31 (6) O4i—Sr3—C16vi 63.56 (6)
O2iii—Sr1—O1 131.93 (5) O5i—Sr3—C16vi 83.02 (6)
O2—Sr1—O1 48.07 (5) O7vi—Sr3—C16vi 22.65 (6)
O6iii—Sr1—O1 61.89 (6) O1—Sr3—C16vi 139.48 (6)
O6—Sr1—O1 118.11 (6) O8vi—Sr3—C16vi 23.60 (6)
O3i—Sr1—O1iii 111.31 (6) O9vi—Sr3—C8i 143.07 (7)
O3ii—Sr1—O1iii 68.69 (6) O1i—Sr3—C8i 48.65 (6)
O2iii—Sr1—O1iii 48.07 (5) O6iii—Sr3—C8i 81.07 (6)
O2—Sr1—O1iii 131.93 (5) O3—Sr3—C8i 111.74 (6)
O6iii—Sr1—O1iii 118.11 (6) O4i—Sr3—C8i 19.62 (6)
O6—Sr1—O1iii 61.89 (6) O5i—Sr3—C8i 119.24 (6)
O1—Sr1—O1iii 180.0 O7vi—Sr3—C8i 77.15 (6)
O3i—Sr1—O5iii 120.83 (6) O1—Sr3—C8i 66.95 (6)
O3ii—Sr1—O5iii 59.17 (6) O8vi—Sr3—C8i 78.75 (6)
O2iii—Sr1—O5iii 68.95 (6) C16vi—Sr3—C8i 73.62 (6)
O2—Sr1—O5iii 111.05 (6) O9vi—Sr3—Sr1vii 125.58 (5)
O6iii—Sr1—O5iii 46.67 (5) O1i—Sr3—Sr1vii 41.76 (4)
O6—Sr1—O5iii 133.33 (5) O6iii—Sr3—Sr1vii 144.06 (4)
O1—Sr1—O5iii 108.47 (5) O3—Sr3—Sr1vii 38.86 (4)
O1iii—Sr1—O5iii 71.53 (5) O4i—Sr3—Sr1vii 109.12 (4)
O3i—Sr1—O5 59.17 (6) O5i—Sr3—Sr1vii 44.41 (4)
O3ii—Sr1—O5 120.83 (6) O7vi—Sr3—Sr1vii 84.43 (4)
O2iii—Sr1—O5 111.05 (6) O1—Sr3—Sr1vii 82.91 (4)
O2—Sr1—O5 68.95 (6) O8vi—Sr3—Sr1vii 130.22 (4)
O6iii—Sr1—O5 133.33 (5) C16vi—Sr3—Sr1vii 106.72 (5)
O6—Sr1—O5 46.67 (5) C8i—Sr3—Sr1vii 90.35 (4)
O1—Sr1—O5 71.53 (5) C1—O1—Sr3i 119.45 (16)
O1iii—Sr1—O5 108.47 (5) C1—O1—Sr1 89.98 (14)
O5iii—Sr1—O5 180.0 Sr3i—O1—Sr1 99.39 (6)
O3i—Sr1—O4i 46.64 (5) C1—O1—Sr3 129.32 (16)
O3ii—Sr1—O4i 133.36 (5) Sr3i—O1—Sr3 108.81 (6)
O2iii—Sr1—O4i 59.32 (5) Sr1—O1—Sr3 96.94 (5)
O2—Sr1—O4i 120.68 (5) C1—O2—Sr2 126.39 (17)
O6iii—Sr1—O4i 65.35 (6) C1—O2—Sr1 95.62 (17)
O6—Sr1—O4i 114.65 (6) Sr2—O2—Sr1 98.51 (6)
O1—Sr1—O4i 73.41 (5) C8—O3—Sr3 121.66 (16)
O1iii—Sr1—O4i 106.59 (5) C8—O3—Sr1vii 100.71 (17)
O5iii—Sr1—O4i 75.06 (5) Sr3—O3—Sr1vii 102.43 (7)
O5—Sr1—O4i 104.94 (5) C8—O4—Sr2vii 135.86 (16)
O3i—Sr1—O4ii 133.36 (5) C8—O4—Sr3i 114.66 (15)
O3ii—Sr1—O4ii 46.64 (5) Sr2vii—O4—Sr3i 109.39 (6)
O2iii—Sr1—O4ii 120.68 (5) C8—O4—Sr1vii 87.01 (16)
O2—Sr1—O4ii 59.32 (5) Sr2vii—O4—Sr1vii 90.77 (5)
O6iii—Sr1—O4ii 114.65 (6) Sr3i—O4—Sr1vii 96.68 (6)
O6—Sr1—O4ii 65.35 (6) C9—O5—Sr2 112.02 (16)
O1—Sr1—O4ii 106.59 (5) C9—O5—Sr3i 132.22 (17)
O1iii—Sr1—O4ii 73.41 (5) Sr2—O5—Sr3i 115.44 (7)
O5iii—Sr1—O4ii 104.94 (5) C9—O5—Sr1 86.87 (15)
O5—Sr1—O4ii 75.06 (5) Sr2—O5—Sr1 94.66 (6)
O4i—Sr1—O4ii 180.00 (5) Sr3i—O5—Sr1 94.48 (5)
O5—Sr2—O10 153.40 (7) C9—O6—Sr3iii 138.19 (17)
O5—Sr2—O2 75.35 (6) C9—O6—Sr1 97.19 (16)
O10—Sr2—O2 88.68 (7) Sr3iii—O6—Sr1 104.80 (7)
O5—Sr2—O9 125.53 (6) C16—O7—Sr2iv 143.91 (17)
O10—Sr2—O9 50.80 (7) C16—O7—Sr3viii 99.92 (17)
O2—Sr2—O9 128.29 (6) Sr2iv—O7—Sr3viii 111.61 (7)
O5—Sr2—O7iv 66.86 (6) C16—O8—Sr2v 118.00 (16)
O10—Sr2—O7iv 88.28 (7) C16—O8—Sr2 121.54 (15)
O2—Sr2—O7iv 72.55 (6) Sr2v—O8—Sr2 115.75 (6)
O9—Sr2—O7iv 75.32 (6) C16—O8—Sr3viii 89.57 (15)
O5—Sr2—O8v 101.16 (6) Sr2v—O8—Sr3viii 102.86 (6)
O10—Sr2—O8v 105.39 (7) Sr2—O8—Sr3viii 99.56 (6)
O2—Sr2—O8v 129.55 (6) C17—O9—Sr3viii 153.6 (2)
O9—Sr2—O8v 95.28 (6) C17—O9—Sr2 91.1 (2)
O7iv—Sr2—O8v 153.14 (6) Sr3viii—O9—Sr2 114.79 (8)
O5—Sr2—O8 68.06 (6) C17—O10—Sr2 94.3 (2)
O10—Sr2—O8 123.11 (7) O2—C1—O1 122.6 (3)
O2—Sr2—O8 143.15 (6) O2—C1—C2 118.3 (3)
O9—Sr2—O8 73.66 (6) O1—C1—C2 119.0 (2)
O7iv—Sr2—O8 88.90 (6) O2—C1—Sr1 60.21 (14)
O8v—Sr2—O8 64.25 (6) O1—C1—Sr1 65.40 (14)
O5—Sr2—O4ii 85.44 (6) C2—C1—Sr1 162.29 (18)
O10—Sr2—O4ii 106.46 (7) C3—C2—C7 119.5 (3)
O2—Sr2—O4ii 63.25 (6) C3—C2—C1 119.7 (2)
O9—Sr2—O4ii 147.58 (6) C7—C2—C1 120.6 (3)
O7iv—Sr2—O4ii 132.53 (6) C2—C3—C4 120.5 (3)
O8v—Sr2—O4ii 66.31 (6) C2—C3—H3A 119.7
O8—Sr2—O4ii 116.43 (6) C4—C3—H3A 119.7
O5—Sr2—C17 144.39 (8) C5—C4—C3 119.8 (3)
O10—Sr2—C17 25.29 (8) C5—C4—H4A 120.1
O2—Sr2—C17 108.87 (8) C3—C4—H4A 120.1
O9—Sr2—C17 25.52 (8) C4—C5—C6 120.3 (3)
O7iv—Sr2—C17 80.49 (8) C4—C5—H5A 119.9
O8v—Sr2—C17 101.96 (8) C6—C5—H5A 119.9
O8—Sr2—C17 98.66 (8) C7—C6—C5 120.2 (3)
O4ii—Sr2—C17 128.81 (8) C7—C6—H6A 119.9
O5—Sr2—C9 21.42 (6) C5—C6—H6A 119.9
O10—Sr2—C9 174.73 (7) C6—C7—C2 119.7 (3)
O2—Sr2—C9 87.44 (6) C6—C7—C8 119.3 (2)
O9—Sr2—C9 130.15 (7) C2—C7—C8 121.0 (3)
O7iv—Sr2—C9 87.16 (6) O3—C8—O4 123.9 (3)
O8v—Sr2—C9 79.84 (6) O3—C8—C7 117.3 (2)
O8—Sr2—C9 59.46 (6) O4—C8—C7 118.8 (2)
O4ii—Sr2—C9 74.88 (6) O3—C8—Sr1vii 56.14 (14)
C17—Sr2—C9 155.22 (9) O4—C8—Sr1vii 69.17 (15)
O5—Sr2—Sr1 46.07 (4) C7—C8—Sr1vii 164.05 (18)
O10—Sr2—Sr1 127.95 (6) O3—C8—Sr3i 108.26 (18)
O2—Sr2—Sr1 41.23 (4) O4—C8—Sr3i 45.72 (12)
O9—Sr2—Sr1 163.24 (5) C7—C8—Sr3i 115.95 (16)
O7iv—Sr2—Sr1 88.05 (4) Sr1vii—C8—Sr3i 79.71 (6)
O8v—Sr2—Sr1 100.66 (4) O6—C9—O5 122.1 (3)
O8—Sr2—Sr1 108.71 (4) O6—C9—C10 119.3 (2)
O4ii—Sr2—Sr1 47.09 (4) O5—C9—C10 118.6 (2)
C17—Sr2—Sr1 150.09 (7) O6—C9—Sr1 59.12 (13)
C9—Sr2—Sr1 49.25 (5) O5—C9—Sr1 68.79 (14)
O5—Sr2—Sr3viii 99.78 (4) C10—C9—Sr1 153.70 (18)
O10—Sr2—Sr3viii 82.14 (6) O6—C9—Sr2 97.14 (17)
O2—Sr2—Sr3viii 147.27 (4) O5—C9—Sr2 46.56 (13)
O9—Sr2—Sr3viii 31.50 (5) C10—C9—Sr2 126.17 (17)
O7iv—Sr2—Sr3viii 75.82 (4) Sr1—C9—Sr2 78.21 (6)
O8v—Sr2—Sr3viii 83.16 (4) C11—C10—C15 119.4 (3)
O8—Sr2—Sr3viii 42.44 (4) C11—C10—C9 118.8 (3)
O4ii—Sr2—Sr3viii 149.44 (4) C15—C10—C9 121.7 (2)
C17—Sr2—Sr3viii 56.95 (7) C12—C11—C10 121.0 (3)
C9—Sr2—Sr3viii 99.28 (5) C12—C11—H11A 119.5
Sr1—Sr2—Sr3viii 145.840 (8) C10—C11—H11A 119.5
O9vi—Sr3—O1i 164.51 (6) C13—C12—C11 119.4 (3)
O9vi—Sr3—O6iii 73.93 (6) C13—C12—H12A 120.3
O1i—Sr3—O6iii 121.54 (6) C11—C12—H12A 120.3
O9vi—Sr3—O3 103.04 (7) C12—C13—C14 120.3 (3)
O1i—Sr3—O3 71.31 (6) C12—C13—H13A 119.9
O6iii—Sr3—O3 113.33 (6) C14—C13—H13A 119.9
O9vi—Sr3—O4i 123.48 (6) C13—C14—C15 120.9 (3)
O1i—Sr3—O4i 67.42 (6) C13—C14—H14A 119.6
O6iii—Sr3—O4i 69.37 (6) C15—C14—H14A 119.6
O3—Sr3—O4i 130.36 (6) C14—C15—C10 119.0 (3)
O9vi—Sr3—O5i 87.78 (6) C14—C15—C16 118.4 (2)
O1i—Sr3—O5i 76.83 (6) C10—C15—C16 122.4 (2)
O6iii—Sr3—O5i 159.68 (6) O7—C16—O8 122.4 (3)
O3—Sr3—O5i 61.60 (6) O7—C16—C15 120.0 (2)
O4i—Sr3—O5i 129.85 (6) O8—C16—C15 117.5 (2)
O9vi—Sr3—O7vi 96.29 (6) O7—C16—Sr3viii 57.43 (14)
O1i—Sr3—O7vi 75.32 (6) O8—C16—Sr3viii 66.83 (14)
O6iii—Sr3—O7vi 126.54 (6) C15—C16—Sr3viii 161.68 (17)
O3—Sr3—O7vi 120.04 (6) O10—C17—O9 123.8 (3)
O4i—Sr3—O7vi 74.30 (6) O10—C17—Sr2 60.42 (19)
O5i—Sr3—O7vi 63.16 (6) O9—C17—Sr2 63.39 (18)
O9vi—Sr3—O1 120.34 (6) O10—C17—H17A 118.1
O1i—Sr3—O1 71.19 (6) O9—C17—H17A 118.1
O6iii—Sr3—O1 61.57 (5) Sr2—C17—H17A 177.4

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z; (iii) −x+2, −y, −z; (iv) −x+1, −y−1, −z; (v) −x+2, −y−1, −z; (vi) x, y+1, z; (vii) x−1, y, z; (viii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5360).

References

  1. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2010). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Stein, I. & Ruschewitz, U. (2005). Acta Cryst. E61, m141–m143.
  6. Wang, X., Liu, L., Makarenko, T. & Jacobson, A. J. (2010). Cryst. Growth Des. 10, 3752–3756.
  7. Zhang, L., Li, Z. J., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517–6525. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811044977/lh5360sup1.cif

e-67-m1647-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044977/lh5360Isup2.hkl

e-67-m1647-Isup2.hkl (210.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES