Abstract
Acid aspiration-induced systemic organ injury is mediated by the sequestration of activated neutrophils (PMN). In other settings cytokines have been shown to increase neutrophil-endothelial adhesion, a requisite for injury. This study tests whether the systemic leukosequestration and permeability following localized aspiration is mediated by tumor necrosis factor (TNF)-alpha-induced synthesis of an adhesion protein. Anesthetized rats underwent tracheostomy and insertion of a fine-bore cannula into the anterior segment of the left lung. This was followed by the instillation of either 0.1 mL 0.1 N HCI (n = 18) or 0.1 mL saline in control rats (n = 18). Localized aspiration induced generalized pulmonary leukosequestration with 95 PMN/10 high-power fields (HPF) in the aspirated lung and 46 PMN/10 HPF in the nonaspirated lung, higher than control values of 7 PMN/10 HPF and 5 PMN/10 HPF in saline- and nonsaline-aspirated sides, respectively (p less than 0.05). The leukosequestration was associated with permeability edema shown by increased protein concentrations in bronchoalveolar lavage (BAL) of 3900 micrograms/mL in the aspirated and 2680 micrograms/mL in the nonaspirated side, higher than saline with 482 micrograms/mL and 411 micrograms/mL, respectively (p less than 0.05). There was generalized pulmonary edema following aspiration measured by increase in wet-to-dry weight ratios (w/d) of 6.6 in the aspirated and 5.1 in the nonaspirated lung, higher than control values of 3.5 and 3.4, respectively (p less than 0.05). Localized aspiration led to systemic leukosequestration documented by increases in myeloperoxidase activity (units/g tissue) of 2.2 and 1.7 in heart and kidney, higher than control values of 0.3 and 0.4, respectively (p less than 0.05). This event was associated with edema of these organs with w/d ratios of 4.6 and 4.3, relative to control values of 3.0 and 3.4 (p less than 0.05). Treatment of animals (n = 18) 20 minutes after aspiration with anti-TNF-alpha antiserum (rabbit anti-murine) but not normal rabbit serum (n = 18) reduced lung leukosequestration in the aspirated and nonaspirated segments (61 and 32 PMN/10HPF), BAL protein concentration (1490 and 840 micrograms/mL), and w/d ratio (4.3 and 3.7) (all p less than 0.05). In the heart and kidney there were reductions in myeloperoxidase activity (0.7 and 0.6) and w/d ratio (3.5 and 3.6) (both p less than 0.05). Treatment of rabbits (n = 18) with the protein synthesis inhibitor cycloheximide, 0.2 mg/kg/hr was as effective as TNF-alpha antiserum in modifying aspiration injury.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beutler B., Krochin N., Milsark I. W., Luedke C., Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science. 1986 May 23;232(4753):977–980. doi: 10.1126/science.3754653. [DOI] [PubMed] [Google Scholar]
- Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
- Bevilacqua M. P., Gimbrone M. A., Jr Inducible endothelial functions in inflammation and coagulation. Semin Thromb Hemost. 1987 Oct;13(4):425–433. doi: 10.1055/s-2007-1003519. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Goldblum S. E., Wu K. M., Jay M. Lung myeloperoxidase as a measure of pulmonary leukostasis in rabbits. J Appl Physiol (1985) 1985 Dec;59(6):1978–1985. doi: 10.1152/jappl.1985.59.6.1978. [DOI] [PubMed] [Google Scholar]
- Horvath C. J., Ferro T. J., Jesmok G., Malik A. B. Recombinant tumor necrosis factor increases pulmonary vascular permeability independent of neutrophils. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9219–9223. doi: 10.1073/pnas.85.23.9219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krawisz J. E., Sharon P., Stenson W. F. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology. 1984 Dec;87(6):1344–1350. [PubMed] [Google Scholar]
- McIntyre T. M., Zimmerman G. A., Prescott S. M. Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2204–2208. doi: 10.1073/pnas.83.7.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer J. D., Yurt R. W., Duhaney R., Hesse D. G., Tracey K. J., Fong Y. M., Verma M., Shires G. T., Dineen P., Lowry S. F. Tumor necrosis factor-enhanced leukotriene B4 generation and chemotaxis in human neutrophils. Arch Surg. 1988 Dec;123(12):1454–1458. doi: 10.1001/archsurg.1988.01400360024002. [DOI] [PubMed] [Google Scholar]
- Okusawa S., Gelfand J. A., Ikejima T., Connolly R. J., Dinarello C. A. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest. 1988 Apr;81(4):1162–1172. doi: 10.1172/JCI113431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remick D. G., Strieter R. M., Lynch J. P., 3rd, Nguyen D., Eskandari M., Kunkel S. L. In vivo dynamics of murine tumor necrosis factor-alpha gene expression. Kinetics of dexamethasone-induced suppression. Lab Invest. 1989 Jun;60(6):766–771. [PubMed] [Google Scholar]
- Rothlein R., Czajkowski M., O'Neill M. M., Marlin S. D., Mainolfi E., Merluzzi V. J. Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines. Regulation by pharmacologic agents and neutralizing antibodies. J Immunol. 1988 Sep 1;141(5):1665–1669. [PubMed] [Google Scholar]
- Staunton D. E., Marlin S. D., Stratowa C., Dustin M. L., Springer T. A. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1988 Mar 25;52(6):925–933. doi: 10.1016/0092-8674(88)90434-5. [DOI] [PubMed] [Google Scholar]
- Stephens K. E., Ishizaka A., Larrick J. W., Raffin T. A. Tumor necrosis factor causes increased pulmonary permeability and edema. Comparison to septic acute lung injury. Am Rev Respir Dis. 1988 Jun;137(6):1364–1370. doi: 10.1164/ajrccm/137.6.1364. [DOI] [PubMed] [Google Scholar]
- Tonnesen M. G., Anderson D. C., Springer T. A., Knedler A., Avdi N., Henson P. M. Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest. 1989 Feb;83(2):637–646. doi: 10.1172/JCI113928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tracey K. J., Beutler B., Lowry S. F., Merryweather J., Wolpe S., Milsark I. W., Hariri R. J., Fahey T. J., 3rd, Zentella A., Albert J. D. Shock and tissue injury induced by recombinant human cachectin. Science. 1986 Oct 24;234(4775):470–474. doi: 10.1126/science.3764421. [DOI] [PubMed] [Google Scholar]
- Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
- Utsunomiya T., Krausz M. M., Dunham B., Valeri C. R., Levine L., Shepro D., Hechtman H. B. Modification of inflammatory response to aspiration with ibuprofen. Am J Physiol. 1982 Dec;243(6):H903–H910. doi: 10.1152/ajpheart.1982.243.6.H903. [DOI] [PubMed] [Google Scholar]
- Vedder N. B., Winn R. K., Rice C. L., Chi E. Y., Arfors K. E., Harlan J. M. A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest. 1988 Mar;81(3):939–944. doi: 10.1172/JCI113407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler M. E., Luscinskas F. W., Bevilacqua M. P., Gimbrone M. A., Jr Cultured human endothelial cells stimulated with cytokines or endotoxin produce an inhibitor of leukocyte adhesion. J Clin Invest. 1988 Oct;82(4):1211–1218. doi: 10.1172/JCI113718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuo A., Kitagawa S., Suzuki I., Urabe A., Okabe T., Saito M., Takaku F. Tumor necrosis factor as an activator of human granulocytes. Potentiation of the metabolisms triggered by the Ca2+-mobilizing agonists. J Immunol. 1989 Mar 1;142(5):1678–1684. [PubMed] [Google Scholar]