Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):m306. doi: 10.1107/S1600536812006022

(Acetyl­acetonato-κ2 O,O′)bis­[2-(5-methyl-3-phenyl­pyrazin-2-yl-κN 1)phen­yl-κC 1]iridium(III)

Guo-Ping Ge a,*, Chun-Yan Li a, Cheng-Hao Gu a, Mao-He Li a, Xiao-Nan Xu a
PMCID: PMC3297258  PMID: 22412448

Abstract

In the title complex, [Ir(C17H13N2)2(C5H7O2)], the IrIII atom is hexa­coordinated in a distorted octa­hedral geometry by two C,N-bidentate 2-(5-methyl-3-phenyl­pyrazin-2-yl)phenyl (mdpp) ligands and one O,O-bidentate acetyl­acetonate ligand. The dihedral angles between the phenyl rings and the pyrazine ring are 9.56 (14) and 58.99 (14)° for one mdpp ligand and 9.34 (14) and 79.94 (15)° for the other.

Related literature  

For background to organic light-emitting diodes based on phospho­rescent complexes, see: Baldo et al. (1998, 2000); Hwang et al. (2005); Liu et al. (2008); Tsuboyama et al. (2003). For the synthesis, see: Zhang et al. (2003, 2005).graphic file with name e-68-0m306-scheme1.jpg

Experimental  

Crystal data  

  • [Ir(C17H13N2)2(C5H7O2)]

  • M r = 781.91

  • Monoclinic, Inline graphic

  • a = 11.078 (2) Å

  • b = 26.021 (5) Å

  • c = 12.155 (2) Å

  • β = 106.09 (3)°

  • V = 3366.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.01 mm−1

  • T = 295 K

  • 0.43 × 0.30 × 0.12 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.240, T max = 0.606

  • 25384 measured reflections

  • 5991 independent reflections

  • 4919 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.062

  • S = 1.05

  • 5991 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006022/hy2507sup1.cif

e-68-0m306-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006022/hy2507Isup2.hkl

e-68-0m306-Isup2.hkl (293.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ir1—N1 2.035 (3)
Ir1—N3 2.035 (3)
Ir1—O1 2.162 (3)
Ir1—O2 2.173 (3)
Ir1—C22 2.006 (4)
Ir1—C39 1.999 (4)

Acknowledgments

This project was supported by Ningbo Municipal Natural Science Foundation (grant No. 2010 A610164) and sponsored by the K. C. Wong Magna Fund of Ningbo University.

supplementary crystallographic information

Comment

In recent decades, organic light-emitting diodes (OLEDs) based on phosphorescent complexes have attracted increasing attention due to their potential applications in full-color flat panel displays (Baldo et al., 1998, 2000). Among these phosphorescent complexes, iridium cyclometalates often exhibit favorable photoproperties for OLEDs including short phosphorescent lifetimes, high quantum efficiencies and good stability (Liu et al., 2008; Hwang et al., 2005; Tsuboyama et al., 2003). Zhang et al. (2005) demonstrated a high efficiency yellow OLED using [Ir(mdpp)2(acac)] [mdpp = 2-(5-methyl-3-phenylpyrazine-2-yl)phenyl, Hacac = acetylacetone] as the dopant. In this work, we synthesized the title complex, [Ir(mdpp)2(acac)], and investigated its crystal structure.

The molecular structure of the title complex is shown in Fig. 1. The IrIII ion has an approximately octahedral coordination geometry and is hexacoordinated by two C atoms and two N atoms from two C,N-bidentate mdpp ligands, which exhibit cis-C,C and trans-N,N chelate dispositions, and two O atoms from one O,O-bidentate acac ligand. The bond lengths of Ir—N,O,C are listed in Table 1. Due to steric interactions, the phenyl groups are not coplanar with the pyrazine group. The dihedral angles between the phenyl rings and pyrazine ring are 58.99 (14)° (between the N1,N2,C6–C9 ring and C11–C16 ring), 9.56 (14)° (between the N1,N2,C6–C9 ring and C17–C22 ring), 79.94 (15)° (between the N3,N4,C23–C26 ring and C28–C33 ring) and 9.34 (14)° (between the N3,N4,C23–C26 ring and C34–C39 ring).

Experimental

The title complex was obtained according to the procedure previously reported (Zhang et al., 2003, 2005). Orange red crystals of the title complex suitable for X-ray structure analysis were grown from a mixture of 3 ml dichloromethane and 12 ml ethanol.

Refinement

H atoms attached to C atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 0.88 Å from Ir1 atom and the deepest hole at 1.51 Å from O1 atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, showing displacement ellipsoids at the 30% probability level.

Crystal data

[Ir(C17H13N2)2(C5H7O2)] F(000) = 1552.0
Mr = 781.91 Dx = 1.543 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6987 reflections
a = 11.078 (2) Å θ = 1.0–25.1°
b = 26.021 (5) Å µ = 4.01 mm1
c = 12.155 (2) Å T = 295 K
β = 106.09 (3)° Flaky, orange
V = 3366.6 (12) Å3 0.43 × 0.30 × 0.12 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 5991 independent reflections
Radiation source: rotation anode 4919 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
ω scans θmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −13→12
Tmin = 0.240, Tmax = 0.606 k = −31→31
25384 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0275P)2 + 3.1586P] where P = (Fo2 + 2Fc2)/3
5991 reflections (Δ/σ)max = 0.001
415 parameters Δρmax = 1.12 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.208032 (15) 0.139098 (6) 0.782061 (14) 0.03722 (6)
C1 0.4386 (5) 0.1537 (2) 1.1455 (4) 0.0693 (15)
H22A 0.5054 0.1691 1.1209 0.104*
H22B 0.4668 0.1217 1.1833 0.104*
H22C 0.4140 0.1764 1.1977 0.104*
C2 0.3278 (4) 0.14403 (17) 1.0431 (4) 0.0525 (11)
C3 0.2208 (5) 0.1215 (2) 1.0628 (4) 0.0698 (15)
H20A 0.2264 0.1140 1.1389 0.084*
C4 0.1087 (5) 0.10886 (19) 0.9852 (5) 0.0580 (13)
C5 0.0044 (5) 0.0863 (2) 1.0299 (5) 0.0805 (17)
H19A −0.0679 0.0794 0.9668 0.121*
H19B −0.0177 0.1104 1.0810 0.121*
H19C 0.0330 0.0549 1.0702 0.121*
C6 0.2705 (5) 0.02880 (17) 0.8455 (4) 0.0589 (13)
H2A 0.2061 0.0309 0.8808 0.071*
C7 0.3347 (5) −0.01666 (18) 0.8502 (5) 0.0722 (16)
C8 0.4656 (4) 0.02194 (16) 0.7558 (4) 0.0475 (11)
C9 0.3949 (4) 0.06790 (15) 0.7408 (3) 0.0393 (9)
C10 0.3003 (7) −0.0642 (2) 0.9060 (7) 0.123 (3)
H39A 0.3558 −0.0918 0.9003 0.185*
H39B 0.2153 −0.0738 0.8680 0.185*
H39C 0.3079 −0.0572 0.9852 0.185*
C11 0.5840 (4) 0.01549 (16) 0.7211 (4) 0.0468 (11)
C12 0.6876 (4) 0.0471 (2) 0.7647 (4) 0.0627 (14)
H17A 0.6831 0.0734 0.8151 0.075*
C13 0.7983 (5) 0.0394 (2) 0.7333 (5) 0.0747 (16)
H13A 0.8672 0.0607 0.7621 0.090*
C14 0.8042 (5) 0.0002 (2) 0.6596 (6) 0.0769 (17)
H14A 0.8784 −0.0056 0.6399 0.092*
C15 0.7021 (5) −0.0308 (2) 0.6146 (5) 0.0705 (15)
H15A 0.7062 −0.0564 0.5624 0.085*
C16 0.5932 (5) −0.02378 (18) 0.6470 (4) 0.0572 (12)
H16A 0.5254 −0.0457 0.6187 0.069*
C17 0.4081 (4) 0.11465 (16) 0.6771 (3) 0.0394 (9)
C18 0.4850 (4) 0.11940 (17) 0.6030 (4) 0.0443 (10)
H8A 0.5310 0.0914 0.5896 0.053*
C19 0.4920 (4) 0.16631 (17) 0.5498 (4) 0.0496 (11)
H4A 0.5432 0.1697 0.5011 0.059*
C20 0.4227 (4) 0.20772 (17) 0.5693 (4) 0.0488 (11)
H10A 0.4304 0.2393 0.5363 0.059*
C21 0.3419 (4) 0.20268 (16) 0.6377 (4) 0.0464 (10)
H11A 0.2948 0.2309 0.6479 0.056*
C22 0.3292 (4) 0.15624 (15) 0.6917 (3) 0.0377 (9)
C23 0.1626 (4) 0.24994 (16) 0.8225 (4) 0.0428 (10)
H28A 0.2327 0.2468 0.8854 0.051*
C24 0.1039 (4) 0.29742 (16) 0.7977 (4) 0.0450 (10)
C25 −0.0375 (4) 0.26227 (16) 0.6396 (4) 0.0437 (10)
C26 0.0176 (4) 0.21332 (15) 0.6644 (4) 0.0403 (9)
C27 0.1525 (5) 0.34458 (17) 0.8674 (4) 0.0650 (14)
H34A 0.0994 0.3733 0.8369 0.098*
H34B 0.2366 0.3516 0.8643 0.098*
H34C 0.1525 0.3389 0.9454 0.098*
C28 −0.1423 (4) 0.27482 (16) 0.5357 (4) 0.0444 (10)
C29 −0.2639 (4) 0.2821 (2) 0.5423 (5) 0.0689 (15)
H33A −0.2825 0.2773 0.6117 0.083*
C30 −0.3581 (5) 0.2964 (2) 0.4461 (5) 0.0759 (17)
H35A −0.4398 0.3009 0.4508 0.091*
C31 −0.3309 (5) 0.3038 (2) 0.3450 (5) 0.0669 (14)
H36A −0.3950 0.3122 0.2800 0.080*
C32 −0.2114 (5) 0.2992 (2) 0.3375 (5) 0.0765 (16)
H37A −0.1928 0.3061 0.2690 0.092*
C33 −0.1174 (5) 0.2840 (2) 0.4334 (4) 0.0701 (15)
H38A −0.0358 0.2799 0.4279 0.084*
C34 −0.0151 (4) 0.16473 (16) 0.5999 (4) 0.0448 (10)
C35 −0.1229 (5) 0.15696 (19) 0.5085 (5) 0.0658 (14)
H25A −0.1818 0.1831 0.4863 0.079*
C36 −0.1418 (5) 0.1103 (2) 0.4511 (5) 0.0747 (16)
H30A −0.2135 0.1049 0.3909 0.090*
C37 −0.0527 (5) 0.07180 (18) 0.4845 (4) 0.0626 (13)
H24A −0.0638 0.0409 0.4445 0.075*
C38 0.0516 (4) 0.07848 (16) 0.5754 (4) 0.0493 (11)
H23A 0.1096 0.0519 0.5960 0.059*
C39 0.0730 (4) 0.12449 (15) 0.6381 (4) 0.0411 (10)
N1 0.2983 (3) 0.07045 (12) 0.7911 (3) 0.0414 (8)
N2 0.4340 (4) −0.01988 (14) 0.8071 (4) 0.0649 (12)
N3 0.1204 (3) 0.20862 (12) 0.7578 (3) 0.0376 (8)
N4 0.0040 (3) 0.30328 (13) 0.7065 (3) 0.0487 (9)
O1 0.0806 (3) 0.11293 (12) 0.8766 (3) 0.0520 (8)
O2 0.3405 (3) 0.15789 (11) 0.9454 (3) 0.0471 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.03609 (9) 0.03515 (9) 0.04216 (10) 0.00151 (8) 0.01377 (7) 0.00015 (8)
C1 0.073 (4) 0.070 (3) 0.056 (3) 0.004 (3) 0.003 (3) 0.005 (3)
C2 0.058 (3) 0.050 (3) 0.049 (3) 0.005 (2) 0.014 (2) −0.001 (2)
C3 0.075 (4) 0.092 (4) 0.045 (3) −0.015 (3) 0.022 (3) 0.002 (3)
C4 0.069 (3) 0.057 (3) 0.059 (3) −0.005 (3) 0.035 (3) −0.004 (2)
C5 0.085 (4) 0.094 (4) 0.080 (4) −0.026 (3) 0.051 (3) −0.010 (3)
C6 0.067 (3) 0.048 (3) 0.076 (4) 0.009 (2) 0.044 (3) 0.013 (2)
C7 0.090 (4) 0.043 (3) 0.105 (5) 0.017 (3) 0.062 (4) 0.023 (3)
C8 0.054 (3) 0.041 (2) 0.052 (3) 0.005 (2) 0.023 (2) 0.000 (2)
C9 0.040 (2) 0.038 (2) 0.041 (2) 0.0029 (18) 0.0147 (19) −0.0014 (18)
C10 0.166 (7) 0.056 (4) 0.203 (8) 0.029 (4) 0.145 (7) 0.050 (4)
C11 0.046 (3) 0.041 (2) 0.055 (3) 0.007 (2) 0.018 (2) 0.007 (2)
C12 0.062 (3) 0.064 (3) 0.062 (3) 0.007 (3) 0.016 (3) −0.005 (3)
C13 0.050 (3) 0.087 (4) 0.086 (4) −0.004 (3) 0.016 (3) −0.005 (3)
C14 0.062 (4) 0.078 (4) 0.103 (5) 0.016 (3) 0.044 (3) 0.004 (3)
C15 0.078 (4) 0.065 (3) 0.081 (4) 0.011 (3) 0.043 (3) −0.009 (3)
C16 0.060 (3) 0.046 (3) 0.071 (3) 0.006 (2) 0.027 (3) −0.001 (2)
C17 0.037 (2) 0.040 (2) 0.039 (2) −0.0041 (18) 0.0057 (19) −0.0006 (18)
C18 0.047 (2) 0.045 (2) 0.044 (3) −0.004 (2) 0.019 (2) −0.002 (2)
C19 0.053 (3) 0.054 (3) 0.047 (3) −0.007 (2) 0.023 (2) 0.002 (2)
C20 0.049 (3) 0.047 (3) 0.048 (3) −0.008 (2) 0.009 (2) 0.010 (2)
C21 0.043 (2) 0.041 (2) 0.052 (3) 0.004 (2) 0.009 (2) 0.007 (2)
C22 0.037 (2) 0.040 (2) 0.034 (2) −0.0005 (18) 0.0063 (18) −0.0029 (17)
C23 0.043 (2) 0.045 (2) 0.039 (2) 0.002 (2) 0.009 (2) −0.0051 (19)
C24 0.050 (3) 0.043 (2) 0.043 (3) 0.003 (2) 0.015 (2) −0.0064 (19)
C25 0.040 (2) 0.045 (2) 0.045 (3) 0.002 (2) 0.010 (2) −0.003 (2)
C26 0.035 (2) 0.043 (2) 0.042 (2) −0.0021 (18) 0.0081 (19) −0.0049 (19)
C27 0.083 (4) 0.043 (3) 0.060 (3) 0.010 (3) 0.007 (3) −0.009 (2)
C28 0.038 (2) 0.045 (2) 0.048 (3) 0.0048 (19) 0.009 (2) 0.000 (2)
C29 0.046 (3) 0.096 (4) 0.066 (4) 0.012 (3) 0.017 (3) 0.024 (3)
C30 0.038 (3) 0.108 (5) 0.080 (4) 0.014 (3) 0.012 (3) 0.027 (4)
C31 0.050 (3) 0.079 (4) 0.060 (3) 0.012 (3) −0.003 (3) 0.012 (3)
C32 0.063 (3) 0.115 (5) 0.048 (3) 0.010 (3) 0.010 (3) 0.006 (3)
C33 0.048 (3) 0.106 (4) 0.059 (3) 0.016 (3) 0.019 (3) 0.002 (3)
C34 0.039 (2) 0.043 (2) 0.049 (3) −0.003 (2) 0.007 (2) −0.006 (2)
C35 0.058 (3) 0.049 (3) 0.077 (4) 0.006 (2) −0.003 (3) −0.017 (3)
C36 0.065 (3) 0.064 (3) 0.076 (4) −0.013 (3) −0.012 (3) −0.018 (3)
C37 0.072 (3) 0.044 (3) 0.068 (3) −0.011 (3) 0.013 (3) −0.014 (2)
C38 0.054 (3) 0.037 (2) 0.058 (3) 0.001 (2) 0.017 (2) −0.006 (2)
C39 0.037 (2) 0.042 (2) 0.047 (3) −0.0039 (18) 0.016 (2) 0.0003 (19)
N1 0.048 (2) 0.0341 (18) 0.046 (2) 0.0037 (15) 0.0191 (17) 0.0035 (15)
N2 0.081 (3) 0.039 (2) 0.093 (3) 0.016 (2) 0.054 (3) 0.016 (2)
N3 0.0367 (18) 0.0359 (18) 0.042 (2) 0.0017 (15) 0.0136 (16) −0.0035 (15)
N4 0.050 (2) 0.044 (2) 0.051 (2) 0.0083 (17) 0.0122 (19) −0.0024 (18)
O1 0.0475 (18) 0.0573 (19) 0.057 (2) −0.0063 (15) 0.0237 (16) −0.0032 (16)
O2 0.0431 (17) 0.0506 (17) 0.0455 (18) −0.0010 (14) 0.0086 (14) 0.0029 (14)

Geometric parameters (Å, º)

Ir1—N1 2.035 (3) C17—C22 1.433 (6)
Ir1—N3 2.035 (3) C18—C19 1.394 (6)
Ir1—O1 2.162 (3) C18—H8A 0.9300
Ir1—O2 2.173 (3) C19—C20 1.381 (6)
Ir1—C22 2.006 (4) C19—H4A 0.9300
Ir1—C39 1.999 (4) C20—C21 1.386 (6)
C1—C2 1.508 (7) C20—H10A 0.9300
C1—H22A 0.9600 C21—C22 1.401 (6)
C1—H22B 0.9600 C21—H11A 0.9300
C1—H22C 0.9600 C23—N3 1.338 (5)
C2—O2 1.285 (5) C23—C24 1.390 (6)
C2—C3 1.401 (7) C23—H28A 0.9300
C3—C4 1.375 (7) C24—N4 1.340 (5)
C3—H20A 0.9300 C24—C27 1.503 (6)
C4—O1 1.274 (6) C25—N4 1.344 (5)
C4—C5 1.525 (6) C25—C26 1.409 (6)
C5—H19A 0.9600 C25—C28 1.495 (6)
C5—H19B 0.9600 C26—N3 1.373 (5)
C5—H19C 0.9600 C26—C34 1.479 (6)
C6—N1 1.349 (5) C27—H34A 0.9600
C6—C7 1.374 (6) C27—H34B 0.9600
C6—H2A 0.9300 C27—H34C 0.9600
C7—N2 1.346 (6) C28—C33 1.367 (6)
C7—C10 1.509 (7) C28—C29 1.385 (6)
C8—N2 1.347 (5) C29—C30 1.385 (7)
C8—C9 1.413 (6) C29—H33A 0.9300
C8—C11 1.495 (6) C30—C31 1.358 (7)
C9—N1 1.373 (5) C30—H35A 0.9300
C9—C17 1.471 (6) C31—C32 1.356 (7)
C10—H39A 0.9600 C31—H36A 0.9300
C10—H39B 0.9600 C32—C33 1.388 (7)
C10—H39C 0.9600 C32—H37A 0.9300
C11—C16 1.385 (6) C33—H38A 0.9300
C11—C12 1.391 (6) C34—C35 1.402 (6)
C12—C13 1.395 (6) C34—C39 1.419 (6)
C12—H17A 0.9300 C35—C36 1.387 (7)
C13—C14 1.373 (8) C35—H25A 0.9300
C13—H13A 0.9300 C36—C37 1.385 (7)
C14—C15 1.372 (8) C36—H30A 0.9300
C14—H14A 0.9300 C37—C38 1.371 (6)
C15—C16 1.380 (6) C37—H24A 0.9300
C15—H15A 0.9300 C38—C39 1.404 (6)
C16—H16A 0.9300 C38—H23A 0.9300
C17—C18 1.407 (5)
C39—Ir1—C22 90.85 (16) C17—C18—H8A 120.1
C39—Ir1—N3 80.27 (15) C20—C19—C18 119.9 (4)
C22—Ir1—N3 95.01 (15) C20—C19—H4A 120.1
C39—Ir1—N1 96.76 (15) C18—C19—H4A 120.1
C22—Ir1—N1 80.28 (14) C19—C20—C21 120.7 (4)
N3—Ir1—N1 174.44 (12) C19—C20—H10A 119.6
C39—Ir1—O1 87.99 (14) C21—C20—H10A 119.6
C22—Ir1—O1 174.49 (13) C20—C21—C22 121.9 (4)
N3—Ir1—O1 90.10 (12) C20—C21—H11A 119.1
N1—Ir1—O1 94.50 (12) C22—C21—H11A 119.1
C39—Ir1—O2 174.37 (13) C21—C22—C17 116.7 (4)
C22—Ir1—O2 93.77 (14) C21—C22—Ir1 128.2 (3)
N3—Ir1—O2 96.12 (12) C17—C22—Ir1 115.0 (3)
N1—Ir1—O2 87.19 (12) N3—C23—C24 121.4 (4)
O1—Ir1—O2 87.71 (11) N3—C23—H28A 119.3
C2—C1—H22A 109.5 C24—C23—H28A 119.3
C2—C1—H22B 109.5 N4—C24—C23 120.7 (4)
H22A—C1—H22B 109.5 N4—C24—C27 117.2 (4)
C2—C1—H22C 109.5 C23—C24—C27 122.0 (4)
H22A—C1—H22C 109.5 N4—C25—C26 122.2 (4)
H22B—C1—H22C 109.5 N4—C25—C28 113.2 (4)
O2—C2—C3 126.1 (5) C26—C25—C28 124.6 (4)
O2—C2—C1 116.4 (4) N3—C26—C25 118.0 (4)
C3—C2—C1 117.5 (4) N3—C26—C34 112.8 (3)
C4—C3—C2 128.9 (5) C25—C26—C34 129.1 (4)
C4—C3—H20A 115.5 C24—C27—H34A 109.5
C2—C3—H20A 115.5 C24—C27—H34B 109.5
O1—C4—C3 127.3 (4) H34A—C27—H34B 109.5
O1—C4—C5 114.2 (5) C24—C27—H34C 109.5
C3—C4—C5 118.5 (5) H34A—C27—H34C 109.5
C4—C5—H19A 109.5 H34B—C27—H34C 109.5
C4—C5—H19B 109.5 C33—C28—C29 118.3 (4)
H19A—C5—H19B 109.5 C33—C28—C25 120.1 (4)
C4—C5—H19C 109.5 C29—C28—C25 121.4 (4)
H19A—C5—H19C 109.5 C28—C29—C30 120.3 (5)
H19B—C5—H19C 109.5 C28—C29—H33A 119.8
N1—C6—C7 121.7 (4) C30—C29—H33A 119.8
N1—C6—H2A 119.1 C31—C30—C29 119.9 (5)
C7—C6—H2A 119.1 C31—C30—H35A 120.1
N2—C7—C6 120.5 (4) C29—C30—H35A 120.1
N2—C7—C10 117.3 (4) C32—C31—C30 120.9 (5)
C6—C7—C10 122.1 (4) C32—C31—H36A 119.5
N2—C8—C9 122.5 (4) C30—C31—H36A 119.5
N2—C8—C11 113.6 (4) C31—C32—C33 119.2 (5)
C9—C8—C11 123.8 (4) C31—C32—H37A 120.4
N1—C9—C8 117.1 (4) C33—C32—H37A 120.4
N1—C9—C17 113.4 (3) C28—C33—C32 121.3 (5)
C8—C9—C17 129.5 (4) C28—C33—H38A 119.4
C7—C10—H39A 109.5 C32—C33—H38A 119.4
C7—C10—H39B 109.5 C35—C34—C39 120.7 (4)
H39A—C10—H39B 109.5 C35—C34—C26 125.0 (4)
C7—C10—H39C 109.5 C39—C34—C26 114.3 (4)
H39A—C10—H39C 109.5 C36—C35—C34 120.1 (5)
H39B—C10—H39C 109.5 C36—C35—H25A 120.0
C16—C11—C12 118.8 (4) C34—C35—H25A 120.0
C16—C11—C8 119.7 (4) C37—C36—C35 119.3 (5)
C12—C11—C8 121.5 (4) C37—C36—H30A 120.3
C11—C12—C13 120.5 (5) C35—C36—H30A 120.3
C11—C12—H17A 119.8 C38—C37—C36 121.2 (4)
C13—C12—H17A 119.8 C38—C37—H24A 119.4
C14—C13—C12 119.3 (5) C36—C37—H24A 119.4
C14—C13—H13A 120.4 C37—C38—C39 121.6 (4)
C12—C13—H13A 120.4 C37—C38—H23A 119.2
C15—C14—C13 120.9 (5) C39—C38—H23A 119.2
C15—C14—H14A 119.6 C38—C39—C34 117.0 (4)
C13—C14—H14A 119.6 C38—C39—Ir1 127.6 (3)
C14—C15—C16 119.9 (5) C34—C39—Ir1 115.2 (3)
C14—C15—H15A 120.1 C6—N1—C9 119.5 (3)
C16—C15—H15A 120.1 C6—N1—Ir1 123.7 (3)
C15—C16—C11 120.7 (5) C9—N1—Ir1 116.8 (3)
C15—C16—H16A 119.6 C7—N2—C8 118.3 (4)
C11—C16—H16A 119.6 C23—N3—C26 119.3 (3)
C18—C17—C22 120.7 (4) C23—N3—Ir1 123.7 (3)
C18—C17—C9 125.2 (4) C26—N3—Ir1 116.9 (3)
C22—C17—C9 114.0 (3) C24—N4—C25 118.4 (4)
C19—C18—C17 119.7 (4) C4—O1—Ir1 124.7 (3)
C19—C18—H8A 120.1 C2—O2—Ir1 124.2 (3)
O2—C2—C3—C4 0.6 (9) C39—C34—C35—C36 −2.8 (8)
C1—C2—C3—C4 179.9 (5) C26—C34—C35—C36 177.5 (5)
C2—C3—C4—O1 3.7 (10) C34—C35—C36—C37 −0.6 (9)
C2—C3—C4—C5 −177.7 (5) C35—C36—C37—C38 2.1 (9)
N1—C6—C7—N2 4.8 (9) C36—C37—C38—C39 −0.3 (8)
N1—C6—C7—C10 −177.1 (6) C37—C38—C39—C34 −2.9 (6)
N2—C8—C9—N1 6.4 (7) C37—C38—C39—Ir1 172.9 (4)
C11—C8—C9—N1 −171.2 (4) C35—C34—C39—C38 4.4 (6)
N2—C8—C9—C17 −173.0 (4) C26—C34—C39—C38 −175.8 (4)
C11—C8—C9—C17 9.5 (7) C35—C34—C39—Ir1 −171.9 (4)
N2—C8—C11—C16 58.3 (6) C26—C34—C39—Ir1 7.8 (5)
C9—C8—C11—C16 −123.9 (5) C22—Ir1—C39—C38 84.3 (4)
N2—C8—C11—C12 −119.4 (5) N3—Ir1—C39—C38 179.2 (4)
C9—C8—C11—C12 58.3 (7) N1—Ir1—C39—C38 4.0 (4)
C16—C11—C12—C13 0.5 (7) O1—Ir1—C39—C38 −90.3 (4)
C8—C11—C12—C13 178.3 (5) C22—Ir1—C39—C34 −99.8 (3)
C11—C12—C13—C14 −0.5 (8) N3—Ir1—C39—C34 −4.9 (3)
C12—C13—C14—C15 1.5 (9) N1—Ir1—C39—C34 179.9 (3)
C13—C14—C15—C16 −2.5 (9) O1—Ir1—C39—C34 85.6 (3)
C14—C15—C16—C11 2.6 (8) C7—C6—N1—C9 −1.3 (8)
C12—C11—C16—C15 −1.6 (7) C7—C6—N1—Ir1 −179.5 (4)
C8—C11—C16—C15 −179.4 (5) C8—C9—N1—C6 −4.0 (6)
N1—C9—C17—C18 −169.3 (4) C17—C9—N1—C6 175.5 (4)
C8—C9—C17—C18 10.1 (7) C8—C9—N1—Ir1 174.3 (3)
N1—C9—C17—C22 7.7 (5) C17—C9—N1—Ir1 −6.3 (4)
C8—C9—C17—C22 −172.9 (4) C39—Ir1—N1—C6 −89.6 (4)
C22—C17—C18—C19 4.9 (6) C22—Ir1—N1—C6 −179.3 (4)
C9—C17—C18—C19 −178.3 (4) O1—Ir1—N1—C6 −1.1 (4)
C17—C18—C19—C20 −0.5 (7) O2—Ir1—N1—C6 86.4 (4)
C18—C19—C20—C21 −2.8 (7) C39—Ir1—N1—C9 92.3 (3)
C19—C20—C21—C22 1.6 (7) C22—Ir1—N1—C9 2.5 (3)
C20—C21—C22—C17 2.7 (6) O1—Ir1—N1—C9 −179.2 (3)
C20—C21—C22—Ir1 −174.2 (3) O2—Ir1—N1—C9 −91.8 (3)
C18—C17—C22—C21 −5.9 (6) C6—C7—N2—C8 −2.4 (9)
C9—C17—C22—C21 177.0 (4) C10—C7—N2—C8 179.3 (6)
C18—C17—C22—Ir1 171.4 (3) C9—C8—N2—C7 −3.1 (8)
C9—C17—C22—Ir1 −5.7 (4) C11—C8—N2—C7 174.6 (5)
C39—Ir1—C22—C21 82.1 (4) C24—C23—N3—C26 0.5 (6)
N3—Ir1—C22—C21 1.8 (4) C24—C23—N3—Ir1 175.7 (3)
N1—Ir1—C22—C21 178.8 (4) C25—C26—N3—C23 1.4 (5)
O2—Ir1—C22—C21 −94.7 (4) C34—C26—N3—C23 178.3 (4)
C39—Ir1—C22—C17 −94.8 (3) C25—C26—N3—Ir1 −174.1 (3)
N3—Ir1—C22—C17 −175.1 (3) C34—C26—N3—Ir1 2.8 (4)
N1—Ir1—C22—C17 1.9 (3) C39—Ir1—N3—C23 −174.3 (3)
O2—Ir1—C22—C17 88.4 (3) C22—Ir1—N3—C23 −84.3 (3)
N3—C23—C24—N4 −1.0 (6) O1—Ir1—N3—C23 97.8 (3)
N3—C23—C24—C27 −178.1 (4) O2—Ir1—N3—C23 10.1 (3)
N4—C25—C26—N3 −2.8 (6) C39—Ir1—N3—C26 1.0 (3)
C28—C25—C26—N3 174.3 (4) C22—Ir1—N3—C26 91.0 (3)
N4—C25—C26—C34 −179.2 (4) O1—Ir1—N3—C26 −86.9 (3)
C28—C25—C26—C34 −2.1 (7) O2—Ir1—N3—C26 −174.6 (3)
N4—C25—C28—C33 96.8 (5) C23—C24—N4—C25 −0.4 (6)
C26—C25—C28—C33 −80.6 (6) C27—C24—N4—C25 176.8 (4)
N4—C25—C28—C29 −77.3 (6) C26—C25—N4—C24 2.3 (6)
C26—C25—C28—C29 105.4 (5) C28—C25—N4—C24 −175.2 (4)
C33—C28—C29—C30 2.3 (8) C3—C4—O1—Ir1 2.3 (7)
C25—C28—C29—C30 176.5 (5) C5—C4—O1—Ir1 −176.4 (3)
C28—C29—C30—C31 −0.6 (9) C39—Ir1—O1—C4 176.2 (4)
C29—C30—C31—C32 −2.4 (10) N3—Ir1—O1—C4 −103.6 (4)
C30—C31—C32—C33 3.4 (9) N1—Ir1—O1—C4 79.6 (4)
C29—C28—C33—C32 −1.3 (8) O2—Ir1—O1—C4 −7.4 (4)
C25—C28—C33—C32 −175.5 (5) C3—C2—O2—Ir1 −9.8 (7)
C31—C32—C33—C28 −1.6 (9) C1—C2—O2—Ir1 171.0 (3)
N3—C26—C34—C35 172.9 (4) C22—Ir1—O2—C2 −163.8 (3)
C25—C26—C34—C35 −10.5 (7) N3—Ir1—O2—C2 100.8 (3)
N3—C26—C34—C39 −6.8 (5) N1—Ir1—O2—C2 −83.7 (3)
C25—C26—C34—C39 169.7 (4) O1—Ir1—O2—C2 10.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2507).

References

  1. Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151–154.
  2. Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2000). Nature (London), 403, 750–753. [DOI] [PubMed]
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Hwang, F. M., Chen, H. Y., Chen, P. S., Liu, C. S., Chi, Y. C., Shu, C. F., Wu, F. L., Chou, P. T., Peng, S. M. & Lee, G. H. (2005). Inorg. Chem. 44, 1344–1353. [DOI] [PubMed]
  5. Liu, Z.-W., Nie, D.-B., Bian, Z.-Q., Chen, F.-F., Lou, B., Bian, J. & Huang, C.-H. (2008). ChemPhysChem, 9, 634–640. [DOI] [PubMed]
  6. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979. [DOI] [PubMed]
  10. Zhang, G.-L., Guo, H.-Q., Chuai, Y.-T. & Zou, D.-C. (2005). Mater. Lett. 59, 3002–3006.
  11. Zhang, G.-L., Liu, Z.-H. & Guo, H.-Q. (2003). Acta Phys. Chim. Sin. 19, 889–891.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006022/hy2507sup1.cif

e-68-0m306-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006022/hy2507Isup2.hkl

e-68-0m306-Isup2.hkl (293.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES