Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 23;68(Pt 7):o2178–o2179. doi: 10.1107/S1600536812027729

2-Amino-4-(4-meth­oxy­phen­yl)-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbonitrile 1,4-dioxane hemisolvate

Shaaban K Mohamed a, Mehmet Akkurt b,*, Muhammad N Tahir c, Antar A Abdelhamid a, Sabry H H Younes d
PMCID: PMC3393982  PMID: 22798847

Abstract

In the crystal structure of the title compound, C17H16N2O3·0.5C4H8O2, pairs of N—H⋯N hydrogen bonds link mol­ecules into dimers with R 2 2(12) motifs, which are connected by N—H⋯O hydrogen bonds, forming a supra­molecular array in the ab plane. The 1,4-dioxane ring, which lies about an inversion center, adopts a chair conformation.

Related literature  

For the biological activity of pyran and fused-pyran mol­ecules, see: Bargagna et al. (1992); Symeonidis et al. (2009); Narender & Gupta (2009); Alvey et al. (2009); Gorlitzer et al. (1984); Han et al. (2008); Martinez & Marco (1997); Smith et al. (1998); Taylor et al. (1998). For related structures, see: Gourdeau et al. (2004); Foroumadi et al. (2007); Mohamed et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2178-scheme1.jpg

Experimental  

Crystal data  

  • C17H16N2O3·0.5C4H8O2

  • M r = 340.37

  • Triclinic, Inline graphic

  • a = 8.0876 (4) Å

  • b = 9.2013 (4) Å

  • c = 12.1613 (6) Å

  • α = 94.376 (2)°

  • β = 102.827 (1)°

  • γ = 95.972 (2)°

  • V = 873.01 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.22 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.973, T max = 0.980

  • 14186 measured reflections

  • 4108 independent reflections

  • 3134 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.194

  • S = 1.07

  • 4108 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027729/tk5115sup1.cif

e-68-o2178-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027729/tk5115Isup2.hkl

e-68-o2178-Isup2.hkl (201.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027729/tk5115Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.27 3.123 (3) 171
N1—H1B⋯O3ii 0.86 2.10 2.945 (2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Manchester Metropolitan University, the University of Sargodha and Erciyes University for guidance and for instrumental support of this study. We also extend our thanks to the Egyptian Government for their financial support of this project.

supplementary crystallographic information

Comment

Pyran and fused pyran ring systems are biologically interesting compounds known for their antimicrobial and antifungal (Alvey, et al., 2009), antioxidant (Symeonidis et al., 2009), antileishmanial (Narender et al., 2009), antitumor (Han et al., 2008). In addition, fused chromene ring systems have platelet antiaggregating, local anesthetic (Bargagna et al. 1992) and antihistaminic activities (Gorlitzer et al. 1984). They also exhibit inhibitory effects on influenza virus sialidases (Smith et al. 1998; Taylor et al. 1998) and antiviral activities (Martinez & Marco, 1997). Such observations prompted us to report the synthesis and crystal structure of the title compound (I).

In (I), Fig. 1, the O2/C8—C10/C12/C13 4H-pyran and C12–C17 cyclohexene rings are puckered with puckering parameters (Cremer & Pople, 1975) of QT = 0.187 (2) Å, θ = 72.2 (5) °, φ = 175.7 (6) ° and QT = 0.455 (2) ° A, θ = 122.9 (3) °, φ = 48.5 (3) °, respectively. The centroid of the solvent 1,4-dioxane ring (O4/C18/C19/O4a/C18a/C19a) lies about an inversion center. The 1,4-dioxane ring adopts a chair conformation [puckering parameters QT = 0.560 (5) Å, θ = 3.46 (3) °, φ = 0.00 °]. The values of the bond lengths and angles in (I) are in normal ranges and are comparable with those of related structures (Gourdeau et al., 2004; Foroumadi et al., 2007; Mohamed et al., 2012).

In the crystal, molecules are linked by the pairs of N—H···N hydrogen bonds, forming dimers, with an R22(12) motif (Bernstein et al., 1995; Table 1, Fig. 2). These dimers are connected through the N—H···O hydrogen bonds with each other (Table 1, Fig. 2).

Experimental

A mixture of (4-methoxybenzylidene)propanedinitrile (184 mg, 1 mmol), cyclohexane-1,3-dione (112 mg, 1 mmol) in presence of ethanolamine (61 mg) as catalyst was refluxed in ethanol (50 ml). The reaction mixture was monitored by TLC until completion after 7 h. A solid product was deposited on cooling at ambient temperature and collected by filtration. The crude product was washed with dioxane and recrystallized from ethanol/drops of dioxane to afford the title compound in 78% yield. Single crystals suitable for X-ray analysis were grown up on slow evaporation of its mixed solvent ethanol/dioxane (9:1) solution at room temperature over three days. M.pt: 435 K.

Refinement

All H atoms were positioned geometrically and refined by using a riding model, with N—H = 0.86 Å and C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), with Uiso(H) = 1.5Ueq(C) for methyl-H and Uiso(H) = 1.2Ueq(C, N) for other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View of the dimers formed by pairs of N—H···N hydrogen bonds (dashed lines), with an R22(12) motif, and the N—H···O hydrogen bonds (dashed lines) which connect the dimers with each other, forming a two-dimensional array. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (a) 2 - x, 2 - y, 2 - z].

Crystal data

C17H16N2O3·0.5C4H8O2 Z = 2
Mr = 340.37 F(000) = 360
Triclinic, P1 Dx = 1.295 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0876 (4) Å Cell parameters from 420 reflections
b = 9.2013 (4) Å θ = 3.6–22.5°
c = 12.1613 (6) Å µ = 0.09 mm1
α = 94.376 (2)° T = 293 K
β = 102.827 (1)° Prism, light-yellow
γ = 95.972 (2)° 0.35 × 0.25 × 0.22 mm
V = 873.01 (7) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 4108 independent reflections
Radiation source: fine-focus sealed tube 3134 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
Detector resolution: 0.81 pixels mm-1 θmax = 27.9°, θmin = 1.7°
ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −12→8
Tmin = 0.973, Tmax = 0.980 l = −16→15
14186 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.273P] where P = (Fo2 + 2Fc2)/3
4108 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1813 (2) 0.42680 (19) 0.00491 (15) 0.0760 (6)
O2 0.93204 (16) 0.95097 (14) 0.33842 (12) 0.0512 (4)
O3 0.36871 (18) 0.99158 (15) 0.37001 (14) 0.0595 (5)
N1 1.0877 (2) 0.77420 (19) 0.39337 (15) 0.0563 (6)
N2 0.8057 (3) 0.5088 (2) 0.49805 (19) 0.0712 (7)
C1 0.5009 (2) 0.70436 (17) 0.26984 (14) 0.0389 (5)
C2 0.4984 (3) 0.7302 (2) 0.15944 (17) 0.0531 (6)
C3 0.3939 (3) 0.6405 (2) 0.06812 (18) 0.0583 (7)
C4 0.2893 (3) 0.5219 (2) 0.08782 (18) 0.0537 (6)
C5 0.2917 (3) 0.4941 (2) 0.19793 (19) 0.0563 (7)
C6 0.3951 (2) 0.58441 (19) 0.28771 (17) 0.0476 (6)
C7 0.1568 (4) 0.4634 (3) −0.1082 (2) 0.0809 (9)
C8 0.6180 (2) 0.79962 (17) 0.37058 (14) 0.0387 (5)
C9 0.7912 (2) 0.74660 (18) 0.40311 (14) 0.0405 (5)
C10 0.9333 (2) 0.81758 (19) 0.38054 (14) 0.0420 (5)
C11 0.8019 (2) 0.6148 (2) 0.45477 (17) 0.0487 (6)
C12 0.7895 (2) 1.02140 (18) 0.33096 (14) 0.0422 (5)
C13 0.6429 (2) 0.95783 (18) 0.34927 (14) 0.0403 (5)
C14 0.5022 (2) 1.04491 (19) 0.35100 (15) 0.0461 (6)
C15 0.5308 (3) 1.2042 (2) 0.3328 (2) 0.0634 (8)
C16 0.6528 (3) 1.2323 (2) 0.2563 (2) 0.0660 (8)
C17 0.8203 (3) 1.1737 (2) 0.29963 (18) 0.0537 (6)
O4 0.8992 (4) 0.9746 (4) 1.0758 (2) 0.1475 (16)
C18 0.8279 (5) 0.9756 (5) 0.9615 (4) 0.1243 (19)
C19 0.9322 (6) 1.0707 (6) 0.9113 (4) 0.138 (2)
H1A 1.10620 0.69140 0.41900 0.0680*
H1B 1.16900 0.82900 0.37610 0.0680*
H2 0.56870 0.81000 0.14570 0.0640*
H3 0.39450 0.66020 −0.00570 0.0700*
H5 0.22270 0.41340 0.21170 0.0680*
H6 0.39390 0.56470 0.36140 0.0570*
H7A 0.11860 0.55860 −0.11240 0.1210*
H7B 0.07240 0.39170 −0.15710 0.1210*
H7C 0.26270 0.46480 −0.13150 0.1210*
H8 0.56480 0.79380 0.43530 0.0460*
H15A 0.57660 1.26170 0.40550 0.0760*
H15B 0.42210 1.23650 0.29930 0.0760*
H16A 0.60040 1.18570 0.18050 0.0790*
H16B 0.67420 1.33710 0.25170 0.0790*
H17A 0.88530 1.17380 0.24150 0.0640*
H17B 0.88670 1.23700 0.36540 0.0640*
H18A 0.71550 1.00780 0.95170 0.1500*
H18B 0.81450 0.87690 0.92390 0.1500*
H19A 0.94160 1.17020 0.94680 0.1660*
H19B 0.87970 1.07000 0.83140 0.1660*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0761 (11) 0.0640 (10) 0.0702 (10) −0.0133 (8) −0.0058 (8) −0.0056 (8)
O2 0.0475 (7) 0.0467 (7) 0.0657 (8) 0.0030 (5) 0.0229 (6) 0.0207 (6)
O3 0.0480 (8) 0.0506 (8) 0.0832 (10) 0.0060 (6) 0.0217 (7) 0.0084 (7)
N1 0.0429 (9) 0.0552 (10) 0.0748 (11) 0.0057 (7) 0.0169 (8) 0.0229 (8)
N2 0.0600 (11) 0.0595 (11) 0.1025 (16) 0.0096 (8) 0.0244 (10) 0.0413 (11)
C1 0.0359 (8) 0.0347 (8) 0.0472 (9) 0.0047 (6) 0.0112 (7) 0.0063 (6)
C2 0.0594 (12) 0.0473 (10) 0.0514 (10) −0.0082 (8) 0.0170 (9) 0.0062 (8)
C3 0.0649 (13) 0.0591 (12) 0.0475 (10) −0.0043 (10) 0.0117 (9) 0.0042 (9)
C4 0.0487 (11) 0.0441 (10) 0.0612 (12) 0.0022 (8) 0.0016 (9) −0.0009 (8)
C5 0.0505 (11) 0.0417 (10) 0.0702 (13) −0.0070 (8) 0.0040 (9) 0.0124 (9)
C6 0.0454 (10) 0.0423 (9) 0.0543 (10) 0.0002 (7) 0.0091 (8) 0.0148 (8)
C7 0.0762 (17) 0.0896 (18) 0.0618 (14) 0.0016 (13) −0.0056 (12) −0.0107 (13)
C8 0.0407 (8) 0.0354 (8) 0.0418 (8) 0.0004 (6) 0.0145 (7) 0.0071 (6)
C9 0.0423 (9) 0.0372 (8) 0.0413 (8) 0.0004 (6) 0.0085 (7) 0.0087 (6)
C10 0.0443 (9) 0.0398 (8) 0.0414 (8) 0.0015 (7) 0.0092 (7) 0.0082 (7)
C11 0.0413 (9) 0.0462 (10) 0.0586 (11) 0.0016 (7) 0.0104 (8) 0.0144 (8)
C12 0.0499 (10) 0.0354 (8) 0.0420 (9) 0.0005 (7) 0.0133 (7) 0.0070 (7)
C13 0.0460 (9) 0.0341 (8) 0.0407 (8) 0.0008 (7) 0.0114 (7) 0.0049 (6)
C14 0.0494 (10) 0.0393 (9) 0.0481 (10) 0.0031 (7) 0.0091 (8) 0.0041 (7)
C15 0.0664 (13) 0.0403 (10) 0.0882 (16) 0.0107 (9) 0.0234 (12) 0.0150 (10)
C16 0.0820 (16) 0.0462 (11) 0.0748 (14) 0.0089 (10) 0.0219 (12) 0.0245 (10)
C17 0.0659 (12) 0.0391 (9) 0.0605 (11) −0.0019 (8) 0.0251 (10) 0.0135 (8)
O4 0.125 (2) 0.236 (4) 0.0879 (17) 0.028 (2) 0.0352 (16) 0.018 (2)
C18 0.105 (3) 0.152 (4) 0.107 (3) 0.002 (3) 0.010 (2) 0.020 (3)
C19 0.114 (3) 0.200 (5) 0.111 (3) 0.038 (3) 0.022 (2) 0.069 (3)

Geometric parameters (Å, º)

O1—C4 1.364 (3) C13—C14 1.461 (2)
O1—C7 1.417 (3) C14—C15 1.501 (3)
O2—C10 1.366 (2) C15—C16 1.516 (3)
O2—C12 1.369 (2) C16—C17 1.511 (3)
O3—C14 1.216 (2) C2—H2 0.9300
O4—C18 1.383 (5) C3—H3 0.9300
O4—C19i 1.446 (6) C5—H5 0.9300
N1—C10 1.330 (2) C6—H6 0.9300
N2—C11 1.143 (3) C7—H7C 0.9600
N1—H1B 0.8600 C7—H7A 0.9600
N1—H1A 0.8600 C7—H7B 0.9600
C1—C2 1.377 (3) C8—H8 0.9800
C1—C8 1.521 (2) C15—H15B 0.9700
C1—C6 1.386 (2) C15—H15A 0.9700
C2—C3 1.388 (3) C16—H16A 0.9700
C3—C4 1.379 (3) C16—H16B 0.9700
C4—C5 1.379 (3) C17—H17B 0.9700
C5—C6 1.376 (3) C17—H17A 0.9700
C8—C13 1.499 (2) C18—C19 1.417 (7)
C8—C9 1.511 (2) C18—H18A 0.9700
C9—C10 1.354 (2) C18—H18B 0.9700
C9—C11 1.410 (3) C19—H19A 0.9700
C12—C13 1.338 (2) C19—H19B 0.9700
C12—C17 1.491 (3)
C4—O1—C7 117.78 (19) C2—C3—H3 120.00
C10—O2—C12 118.91 (14) C6—C5—H5 120.00
C18—O4—C19i 108.6 (3) C4—C5—H5 120.00
H1A—N1—H1B 120.00 C1—C6—H6 120.00
C10—N1—H1B 120.00 C5—C6—H6 120.00
C10—N1—H1A 120.00 O1—C7—H7A 109.00
C2—C1—C6 117.77 (17) O1—C7—H7B 109.00
C6—C1—C8 119.84 (15) H7A—C7—H7B 109.00
C2—C1—C8 122.37 (15) H7A—C7—H7C 109.00
C1—C2—C3 121.88 (19) H7B—C7—H7C 110.00
C2—C3—C4 119.41 (19) O1—C7—H7C 109.00
O1—C4—C5 116.23 (19) C9—C8—H8 108.00
C3—C4—C5 119.3 (2) C13—C8—H8 108.00
O1—C4—C3 124.49 (19) C1—C8—H8 108.00
C4—C5—C6 120.73 (19) C14—C15—H15B 109.00
C1—C6—C5 120.93 (18) C16—C15—H15A 109.00
C9—C8—C13 108.63 (14) C16—C15—H15B 109.00
C1—C8—C13 112.38 (14) H15A—C15—H15B 108.00
C1—C8—C9 111.95 (13) C14—C15—H15A 109.00
C8—C9—C10 122.54 (15) C15—C16—H16B 109.00
C10—C9—C11 119.42 (16) C17—C16—H16A 109.00
C8—C9—C11 118.00 (14) C15—C16—H16A 109.00
O2—C10—N1 110.30 (15) H16A—C16—H16B 108.00
N1—C10—C9 128.22 (17) C17—C16—H16B 109.00
O2—C10—C9 121.48 (15) C12—C17—H17A 110.00
N2—C11—C9 177.6 (2) C12—C17—H17B 110.00
O2—C12—C13 122.91 (15) C16—C17—H17B 110.00
C13—C12—C17 125.75 (17) H17A—C17—H17B 108.00
O2—C12—C17 111.34 (16) C16—C17—H17A 110.00
C8—C13—C14 118.19 (14) O4—C18—C19 110.9 (4)
C8—C13—C12 122.27 (15) O4i—C19—C18 110.8 (4)
C12—C13—C14 119.54 (15) O4—C18—H18A 109.00
C13—C14—C15 117.57 (16) O4—C18—H18B 109.00
O3—C14—C13 121.28 (16) C19—C18—H18A 109.00
O3—C14—C15 121.11 (17) C19—C18—H18B 109.00
C14—C15—C16 112.24 (17) H18A—C18—H18B 108.00
C15—C16—C17 111.57 (18) C18—C19—H19A 109.00
C12—C17—C16 110.51 (18) C18—C19—H19B 109.00
C1—C2—H2 119.00 H19A—C19—H19B 108.00
C3—C2—H2 119.00 O4i—C19—H19A 109.00
C4—C3—H3 120.00 O4i—C19—H19B 110.00
C7—O1—C4—C3 −9.3 (3) C1—C8—C9—C10 105.99 (18)
C7—O1—C4—C5 171.1 (2) C1—C8—C9—C11 −71.4 (2)
C10—O2—C12—C17 171.59 (15) C9—C8—C13—C14 −161.46 (15)
C12—O2—C10—N1 −172.95 (15) C1—C8—C13—C14 74.12 (19)
C10—O2—C12—C13 −8.8 (2) C9—C8—C13—C12 17.3 (2)
C12—O2—C10—C9 7.4 (2) C11—C9—C10—N1 5.4 (3)
C18i—O4i—C19—C18 −58.0 (5) C8—C9—C10—O2 7.6 (3)
C19i—O4—C18—C19 −58.0 (5) C8—C9—C10—N1 −172.00 (17)
C8—C1—C2—C3 178.46 (19) C11—C9—C10—O2 −175.05 (16)
C8—C1—C6—C5 −178.09 (17) C17—C12—C13—C8 174.55 (17)
C2—C1—C6—C5 0.2 (3) C17—C12—C13—C14 −6.7 (3)
C2—C1—C8—C9 −87.6 (2) O2—C12—C17—C16 162.26 (16)
C2—C1—C8—C13 34.9 (2) C13—C12—C17—C16 −17.3 (3)
C6—C1—C8—C9 90.63 (19) O2—C12—C13—C14 173.82 (15)
C6—C1—C8—C13 −146.80 (16) O2—C12—C13—C8 −5.0 (3)
C6—C1—C2—C3 0.2 (3) C12—C13—C14—O3 −178.26 (18)
C1—C2—C3—C4 0.0 (3) C8—C13—C14—O3 0.6 (3)
C2—C3—C4—C5 −0.5 (3) C12—C13—C14—C15 −0.5 (3)
C2—C3—C4—O1 179.8 (2) C8—C13—C14—C15 178.31 (16)
O1—C4—C5—C6 −179.37 (19) O3—C14—C15—C16 −151.3 (2)
C3—C4—C5—C6 1.0 (3) C13—C14—C15—C16 31.0 (3)
C4—C5—C6—C1 −0.8 (3) C14—C15—C16—C17 −54.6 (2)
C13—C8—C9—C11 163.92 (15) C15—C16—C17—C12 46.9 (2)
C1—C8—C13—C12 −107.09 (18) O4—C18—C19—O4i 59.3 (5)
C13—C8—C9—C10 −18.7 (2)

Symmetry code: (i) −x+2, −y+2, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N2ii 0.86 2.27 3.123 (3) 171
N1—H1B···O3iii 0.86 2.10 2.945 (2) 167

Symmetry codes: (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5115).

References

  1. Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem 44, 2497–2505. [DOI] [PubMed]
  2. Bargagna, A., Longobardi, M., Mariani, E., Schenone, P. & Falzarano, C. (1992). Il Farmaco, 47, 345–355. [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Foroumadi, A., Dehghan, G., Samzadeh-Kermani, A., Arabsorkhi, F., Sorkhi, M., Shafiee, A. & Abodollahi, M. (2007). Asian J. Chem. 19, 1391–1396. [DOI] [PubMed]
  10. Gorlitzer, K., Dehre, A. & Engler, E. (1984). Arch. Pharm. Weinheim Ger. 317, 526–530.
  11. Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S.-X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384. [PubMed]
  12. Han, Q.-B., Yang, N.-Y., Tian, H.-L., Qiao, C.-F., Song, J.-Z., Chang, D. C., Chen, S.-L., Luo, K. Q. & Xu, H.-X. (2008). Phytochemistry, 69, 2187–2192. [DOI] [PubMed]
  13. Martinez, A. G. & Marco, L. J. (1997). Bioorg. Med. Chem. Lett. 7, 3165–3170.
  14. Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012). Acta Cryst. E68, o1965–o1966. [DOI] [PMC free article] [PubMed]
  15. Narender, T. & Gupta, S. (2009). Bioorg. Med. Chem. Lett. 14, 3913–3916. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Smith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Starkey, D. I. & Cobley, N. K. (1998). J. Med. Chem. 41, 787–797. [DOI] [PubMed]
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Symeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem Lett 19, 1139-1142. [DOI] [PubMed]
  20. Taylor, R. N., Cleasby, A., Singh, O., Sharzynski, T., Wonacott, J. A., Smith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Bethell, R., Colman, P. & Varghese, J. (1998). J. Med. Chem. 41, 798–807. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027729/tk5115sup1.cif

e-68-o2178-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027729/tk5115Isup2.hkl

e-68-o2178-Isup2.hkl (201.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027729/tk5115Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES