Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 27;68(Pt 7):o2221–o2222. doi: 10.1107/S1600536812027390

Methyl α-l-rhamnosyl-(1→2)[α-l-rhamnosyl-(1→3)]-α-l-rhamnoside penta­hydrate: synchrotron study

Lars Eriksson a,*, Göran Widmalm b
PMCID: PMC3394015  PMID: 22798880

Abstract

The title hydrate, C19H34O13·5H2O, contains a vicinally disubstituted tris­accharide in which the two terminal rhamnosyl sugar groups are positioned adjacent to each other. The conformation of the tris­accharide is described by the glycosidic torsion angles ϕ2 = 48 (1)°, ψ2 = −29 (1)°, ϕ3 = 44 (1)° and ψ3 = 4 (1)°, whereas the ψ2 torsion angle represents a conformation from the major state in solution, the ψ3 torsion angle conformation may have been caught near a potential energy saddle-point when compared to its solution structure, in which at least two but probably three conformational states are populated. Extensive inter­molecular O—H⋯O hydrogen bonding is present in the crystal and a water-containing channel is formed along the b-axis direction.

Related literature  

For a description of l-rhamnose as part of polysaccharides, see: Marie et al. (1998); Perry & MacLean (2000). For a description of the conformational dynamics of the title tris­accharide, see: Eklund et al. (2005); Jonsson et al. (2011). For a description of the puckering analysis of the residues, see: Cremer & Pople (1975). For further background to l-rhamnose, see: Ansaruzzaman et al. (1996); Varki et al. (1999); Kulber-Kielb et al. (2007); Lindberg (1998); Säwén et al. (2010).graphic file with name e-68-o2221-scheme1.jpg

Experimental  

Crystal data  

  • C19H34O13·5H2O

  • M r = 560.54

  • Monoclinic, Inline graphic

  • a = 19.345 (3) Å

  • b = 6.4870 (13) Å

  • c = 21.145 (3) Å

  • β = 97.617 (14)°

  • V = 2630.0 (8) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.8970 Å

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.20 × 0.05 × 0.01 mm

Data collection  

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.97, T max = 0.99

  • 17172 measured reflections

  • 2906 independent reflections

  • 2655 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.087

  • S = 1.07

  • 2906 reflections

  • 376 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027390/hb6841sup1.cif

e-68-o2221-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027390/hb6841Isup2.hkl

e-68-o2221-Isup2.hkl (142.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—H101⋯O33i 0.88 (3) 1.85 (3) 2.726 (2) 176 (2)
OW1—H102⋯OW3ii 0.88 (3) 1.95 (3) 2.802 (2) 162 (2)
OW1—H102⋯O32iii 0.88 (3) 2.55 (3) 2.976 (2) 110 (2)
OW2—H201⋯O12iv 0.88 (3) 2.03 (3) 2.875 (2) 163 (2)
OW2—H202⋯O35ii 0.87 (3) 2.08 (3) 2.877 (2) 153 (2)
OW3—H301⋯OW5 0.88 (3) 2.04 (3) 2.845 (2) 151 (2)
OW3—H302⋯O13v 0.88 (3) 1.96 (3) 2.836 (2) 176 (2)
OW4—H401⋯OW3 0.88 (3) 1.97 (3) 2.840 (2) 168 (2)
OW4—H402⋯OW1 0.88 (3) 1.92 (3) 2.771 (2) 160 (2)
OW5—H501⋯O33vi 0.87 (3) 2.07 (3) 2.918 (2) 168 (2)
OW5—H502⋯OW5vii 0.87 (3) 2.50 (3) 3.333 (2) 159 (2)
O12—H12A⋯O32iii 0.84 2.01 2.767 (2) 149
O13—H13A⋯O15ii 0.84 2.10 2.858 (2) 149
O14—H14A⋯O24iii 0.84 1.95 2.733 (2) 157
O24—H24A⋯OW2 0.84 1.88 2.722 (2) 176
O32—H32A⋯OW5viii 0.84 2.13 2.864 (2) 146
O33—H33A⋯O34i 0.84 1.91 2.684 (2) 152
O34—H34A⋯OW4 0.84 1.86 2.687 (2) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This work was supported by a grant from the Swedish Research Council (VR).

supplementary crystallographic information

Comment

In carbohydrate structures from humans the number of different monosaccharides is quite limited; typically seven different sugars are present in glycoproteins and glycolipids (Varki et al., 1999). Constituents of polysaccharides in man add a few more monosaccharides to the repertoire. In bacteria, however, more than 100 different monosaccharide components have been found (Lindberg, 1998). One of them, L-rhamnose (6-deoxy-L-mannose) is present as a major constituent of the O-antigen polysaccharides from Shigella flexneri (Kulber-Kielb et al., 2007) and is the sole monosaccharide in the repeating unit of an O-antigen from a Klebsiella pneumoniae strain (Ansaruzzaman et al., 1996). L-rhamnose is also found a the branch point sugar in some polysaccharides, e.g., from Escherichia coli O139 (Marie et al., 1998) and Yersinia enterocolitica serotype O:28 (Perry & MacLean, 2000).

In the title compound (I) the three sugar components are all L-rhamnose residues having the α-anomeric configuration. The O-methyl residue (a) is vicinally disubstituted at O2 (residue b) and O3 (residue c) which leads to spatial proximity of also the two latter rhamnosyl groups. The major degrees of freedom in trisaccharide (I) are present at the (1 → 2)- and (1 → 3)-linkages, i.e., between residues b and a as well as between residues c and a, respectively. The torsion angles are given by φ2 = 48°, ψ2 = -29°, φ3 = 44° and ψ3 = 4°. In a recent NMR and molecular dynamics (MD) simulation study of (I) in water solution <φ> ≈ 40°, when the exo-anomeric conformation was populated, but non-exo conformations with φ < 0° were also significantly populated (Eklund et al., 2005). The dynamics of the ψ torsion angles were found to be highly correlated with both ψ2 and ψ3 being either > 0° or < 0°. The conformation of the X-ray structure (Figure 1) is reminiscent of the conformational states found from the MD simulation and the values of the glycosidic torsion angles are observed to correspond to conformational regions that are highly populated, albeit the ψ torsion angles in the solid state structure deviate somewhat from the pattern observed from the molecular simulations with water as a solvent.

In studies of the conformational dynamics of the title trisaccharide trans-glycosidic heteronuclear carbon-proton coupling constants were measured (Eklund et al., 2005; Jonsson et al., 2011) which, when interpreted by Karplus-type relationships (Säwén et al., 2010), can yield information on conformation via torsion angles at the glycosidic linkages. Calculation of the three-bond coupling constants based on the torsion angles in the crystal structure of the trisaccharide showed that for the φ torsion angles and the ψ torsion angle at the α-(1 → 2)-linkage the differences to the experimental data were not larger than ca 0.5 Hz, indicating that for these torsions the conformation in the solid state is similar to that populated to a large extent in solution. However, for the ψ torsion angle at the α-(1 → 3)-linkage the corresponding difference was larger, ca 1 Hz, suggesting that in the crystal structure the latter torsion describes a conformation that is less populated in water solution. The crystal structure conformation is still, however, one in a low potential energy region, since conformational exchange occurs for both of the ψ torsion angles between states for which ψ takes either positive or negative values according to the molecular dynamics simulation (Eklund et al., 2005).

The calculated Cremer & Pople (1975) parameters for the three different rings are: ring O15 → C15 [Q=0.570 (2) Å, θ=177.9 (2) ° and φ=20 (9) °], ring O25 → C25 [Q=0.580 (2) Å, θ=171.4 (2) ° and φ=72.5 (14) °] and for the ring O35 → C35 [Q=0.582 (2) Å, θ=177.1 (2) ° and φ=131 (5) °].

Extensive water-water hydrogen bonding was observed (Table 1) between the title compound and water molecules leading to a water channel in the b-direction (Fig. 2 and Fig. 3). The title compound showed hydrogen bonds to water and to other adjacent (symmetry related) trisaccharides, but no intra-molecular hydrogen bonds were found.

Experimental

The synthesis of (I) was described by Eklund et al. (2005) in which all three rhamnosyl residues have the L absolute configuration. The trisaccharide was crystallized at ambient temperature by slow evaporation from a mixture of water and ethanol (1:1). The crystal was mounted in a capillary tube and diffraction data were collected at 100 K on beamline I711 at the Swedish synchrotron radiation facility, MAXLAB, Lund.

Refinement

All hydrogen atoms, except those on the water molecules, were geometrically placed and constrained to ride on the parent atom. The C—H bond distances are 0.98 Å for CH3, 0.99 Å for CH2, 1.00 Å for CH. The O—H bond distance is 0.84 Å for OH groups. The Uiso(H) = 1.5 Ueq(C,O) for the CH3 and OH while it was set to 1.2 Ueq(C) for all other H atoms. Due to the abscence of significant anomalous scatterers, the value of the Flack parameter was not meaningful, thus the 3220 Friedel equivalents were included in the merging process (MERG 4 in SHELXL). The absolute configuration of each sugar residue is known from the starting compounds used in the synthesis. The hydrogen atoms of the water molecule were located from difference density map, given Uiso(H) = 1.5Ueq(O) and in the refinement the d(O—H) and d(H..H) were restrained to retain the previously known geometry of the water molecule. The H502 is an hydrogen atom connected to a solvent water molecule where the H502 related by a 2 fold axis will be positioned at a much too close distance. The water molecule defined by OW5, H501 and H502 do not strictly fulfil the crystallographic symmetry of the rest of the strucutre, at least this is true for one of the H atoms for this very water molecule.

Figures

Fig. 1.

Fig. 1.

A view of the molecule with displacement ellipsoids drawn at the 50% probablity level.

Fig. 2.

Fig. 2.

Four unit cells viewed along the b axis with the water molecules symbolized by the large blue discs. The water molecules mediate intermolecular hydrogen bonds between the sugar molecules and along the b axis.

Fig. 3.

Fig. 3.

Stereoview of the hydrogen bonded water structure of approximately two unit-cell lengths along the b axis. The water O atoms are shown with blue color and the hydroxyl O atoms are shown with red color.

Crystal data

C19H34O13·5H2O F(000) = 1208
Mr = 560.54 Dx = 1.416 Mg m3
Monoclinic, C2 Synchrotron radiation, λ = 0.8970 Å
Hall symbol: C 2y Cell parameters from 963 reflections
a = 19.345 (3) Å θ = 2.5–39.8°
b = 6.4870 (13) Å µ = 0.22 mm1
c = 21.145 (3) Å T = 100 K
β = 97.617 (14)° Plate, colourless
V = 2630.0 (8) Å3 0.20 × 0.05 × 0.01 mm
Z = 4

Data collection

Bruker SMART 1K CCD diffractometer 2906 independent reflections
Radiation source: Beamline I711, Maxlab 2655 reflections with I > 2σ(I)
Silicon monochromator Rint = 0.046
Detector resolution: 10 pixels mm-1 θmax = 34.1°, θmin = 2.5°
ω scan at different φ h = −23→24
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) k = −8→8
Tmin = 0.97, Tmax = 0.99 l = −23→26
17172 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0607P)2] where P = (Fo2 + 2Fc2)/3
2906 reflections (Δ/σ)max < 0.001
376 parameters Δρmax = 0.56 e Å3
16 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
OW1 0.93266 (10) −0.3863 (3) 0.46456 (9) 0.0236 (4)
H101 0.9098 (15) −0.456 (4) 0.4905 (12) 0.035*
H102 0.9424 (17) −0.474 (4) 0.4352 (12) 0.035*
OW2 0.55372 (9) −0.3755 (3) 0.25876 (10) 0.0244 (4)
H201 0.5191 (11) −0.458 (4) 0.2626 (15) 0.037*
H202 0.5911 (10) −0.422 (5) 0.2816 (14) 0.037*
OW3 0.93523 (9) 0.2971 (3) 0.37476 (9) 0.0213 (4)
H301 0.9740 (11) 0.225 (5) 0.3809 (13) 0.032*
H302 0.9301 (15) 0.339 (5) 0.3350 (8) 0.032*
OW4 0.85929 (11) −0.0490 (3) 0.41056 (10) 0.0321 (5)
H401 0.8879 (15) 0.052 (4) 0.4032 (17) 0.048*
H402 0.8891 (14) −0.133 (4) 0.4327 (16) 0.048*
OW5 1.04589 (10) 0.0556 (3) 0.43863 (9) 0.0271 (4)
H501 1.0791 (14) 0.144 (5) 0.4484 (14) 0.041*
H502 1.0265 (15) 0.022 (5) 0.4722 (11) 0.041*
C11 0.85217 (11) −0.0103 (3) 0.23565 (11) 0.0109 (5)
H11 0.8527 0.0985 0.2692 0.013*
C12 0.88270 (11) −0.2061 (3) 0.26740 (11) 0.0116 (5)
H12 0.8528 −0.2573 0.2992 0.014*
C13 0.88938 (12) −0.3693 (3) 0.21708 (11) 0.0126 (5)
H13 0.8419 −0.4074 0.1957 0.015*
C14 0.93200 (12) −0.2870 (3) 0.16795 (11) 0.0116 (5)
H14 0.9806 −0.2587 0.1886 0.014*
C15 0.89936 (12) −0.0874 (4) 0.13897 (11) 0.0121 (5)
H15 0.8521 −0.1181 0.1157 0.014*
O15 0.89286 (8) 0.0599 (2) 0.18944 (7) 0.0107 (3)
O12 0.94950 (8) −0.1441 (2) 0.29873 (8) 0.0133 (4)
H12A 0.9670 −0.2405 0.3221 0.020*
O13 0.92191 (9) −0.5475 (3) 0.24839 (8) 0.0174 (4)
H13A 0.9233 −0.6427 0.2217 0.026*
O14 0.93366 (8) −0.4346 (3) 0.11879 (8) 0.0155 (4)
H14A 0.9728 −0.4926 0.1230 0.023*
C16 0.94325 (14) 0.0139 (4) 0.09399 (12) 0.0192 (5)
H16A 0.9205 0.1412 0.0771 0.029*
H16B 0.9485 −0.0801 0.0586 0.029*
H16C 0.9893 0.0465 0.1169 0.029*
C21 0.74537 (12) 0.1967 (4) 0.12541 (11) 0.0135 (5)
H21 0.7951 0.1923 0.1173 0.016*
C22 0.74289 (11) 0.1369 (3) 0.19460 (11) 0.0109 (5)
H22 0.7628 0.2513 0.2231 0.013*
O22 0.78200 (8) −0.0481 (2) 0.21047 (7) 0.0106 (3)
C23 0.66745 (11) 0.0994 (3) 0.20516 (11) 0.0105 (5)
H23 0.6417 0.2329 0.1986 0.013*
C24 0.63267 (11) −0.0554 (4) 0.15733 (11) 0.0120 (5)
H24 0.6584 −0.1893 0.1615 0.014*
C25 0.63456 (12) 0.0347 (4) 0.09175 (11) 0.0147 (5)
H25 0.6115 0.1730 0.0896 0.018*
O23 0.66298 (8) 0.0302 (2) 0.26878 (7) 0.0111 (3)
O24 0.56178 (8) −0.0859 (3) 0.16682 (8) 0.0151 (4)
H24A 0.5600 −0.1706 0.1966 0.023*
O25 0.70645 (8) 0.0599 (3) 0.08206 (8) 0.0150 (4)
C26 0.59920 (13) −0.0981 (5) 0.03875 (12) 0.0228 (6)
H26A 0.6034 −0.0334 −0.0024 0.034*
H26B 0.5498 −0.1132 0.0436 0.034*
H26C 0.6213 −0.2342 0.0406 0.034*
O27 0.72203 (9) 0.4015 (2) 0.11823 (8) 0.0160 (4)
C27 0.74020 (15) 0.4932 (5) 0.06129 (14) 0.0277 (6)
H27A 0.7895 0.4660 0.0581 0.042*
H27B 0.7324 0.6423 0.0625 0.042*
H27C 0.7112 0.4341 0.0242 0.042*
C31 0.62082 (12) 0.1575 (4) 0.30105 (11) 0.0110 (5)
H31 0.5776 0.1923 0.2715 0.013*
C32 0.60030 (11) 0.0409 (4) 0.35762 (10) 0.0110 (5)
H32 0.5808 −0.0956 0.3422 0.013*
C33 0.66440 (12) 0.0023 (3) 0.40588 (11) 0.0106 (5)
H33 0.6966 −0.0894 0.3854 0.013*
C34 0.70281 (12) 0.2040 (3) 0.42416 (11) 0.0108 (5)
H34 0.6719 0.2960 0.4460 0.013*
C35 0.72015 (12) 0.3104 (3) 0.36380 (11) 0.0111 (5)
H35 0.7515 0.2194 0.3422 0.013*
O35 0.65577 (8) 0.3437 (2) 0.32144 (7) 0.0117 (3)
O32 0.54699 (8) 0.1518 (3) 0.38395 (8) 0.0126 (3)
H32A 0.5645 0.2558 0.4037 0.019*
O33 0.64458 (8) −0.1032 (2) 0.45946 (8) 0.0133 (4)
H33A 0.6805 −0.1388 0.4838 0.020*
O34 0.76396 (8) 0.1594 (3) 0.46677 (8) 0.0157 (4)
H34A 0.7898 0.0805 0.4488 0.024*
C36 0.75423 (13) 0.5176 (4) 0.37637 (12) 0.0187 (5)
H36A 0.7546 0.5910 0.3359 0.028*
H36B 0.8023 0.4985 0.3969 0.028*
H36C 0.7281 0.5980 0.4044 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
OW1 0.0248 (10) 0.0236 (10) 0.0246 (10) 0.0013 (8) 0.0114 (8) −0.0030 (8)
OW2 0.0130 (9) 0.0193 (9) 0.0394 (12) −0.0022 (8) −0.0019 (8) 0.0144 (8)
OW3 0.0211 (10) 0.0208 (9) 0.0218 (10) −0.0004 (8) 0.0019 (8) −0.0010 (8)
OW4 0.0354 (12) 0.0274 (11) 0.0349 (12) −0.0050 (10) 0.0102 (10) 0.0050 (9)
OW5 0.0270 (11) 0.0176 (9) 0.0343 (11) −0.0025 (8) −0.0046 (9) 0.0022 (9)
C11 0.0078 (11) 0.0104 (10) 0.0138 (11) −0.0012 (9) −0.0008 (9) −0.0032 (9)
C12 0.0066 (11) 0.0135 (11) 0.0143 (12) −0.0022 (9) 0.0000 (9) −0.0007 (9)
C13 0.0112 (11) 0.0085 (10) 0.0171 (12) −0.0003 (9) −0.0018 (9) 0.0011 (9)
C14 0.0086 (11) 0.0113 (10) 0.0139 (11) 0.0015 (9) −0.0025 (9) −0.0015 (9)
C15 0.0108 (11) 0.0108 (10) 0.0140 (12) −0.0002 (9) −0.0006 (9) −0.0005 (9)
O15 0.0098 (8) 0.0089 (7) 0.0133 (8) 0.0001 (6) 0.0020 (6) −0.0003 (7)
O12 0.0097 (8) 0.0133 (8) 0.0149 (9) 0.0010 (7) −0.0055 (6) 0.0006 (7)
O13 0.0251 (9) 0.0082 (8) 0.0185 (9) 0.0040 (7) 0.0017 (7) 0.0012 (7)
O14 0.0131 (8) 0.0163 (8) 0.0164 (9) 0.0063 (7) −0.0006 (7) −0.0047 (7)
C16 0.0241 (14) 0.0176 (12) 0.0172 (13) 0.0002 (10) 0.0075 (10) 0.0026 (10)
C21 0.0104 (12) 0.0126 (11) 0.0179 (12) 0.0031 (9) 0.0032 (9) 0.0022 (10)
C22 0.0080 (11) 0.0083 (10) 0.0161 (12) 0.0034 (9) 0.0009 (9) −0.0015 (9)
O22 0.0055 (8) 0.0099 (7) 0.0156 (8) 0.0017 (6) −0.0012 (6) 0.0010 (6)
C23 0.0092 (11) 0.0120 (11) 0.0100 (11) 0.0023 (9) 0.0003 (8) 0.0011 (9)
C24 0.0054 (10) 0.0154 (11) 0.0154 (11) 0.0028 (9) 0.0014 (9) −0.0010 (10)
C25 0.0100 (11) 0.0196 (12) 0.0139 (12) 0.0027 (10) −0.0010 (9) 0.0000 (10)
O23 0.0088 (8) 0.0131 (8) 0.0113 (8) 0.0038 (6) 0.0016 (6) 0.0013 (7)
O24 0.0084 (8) 0.0199 (9) 0.0167 (9) −0.0017 (7) 0.0007 (6) 0.0043 (7)
O25 0.0124 (8) 0.0204 (9) 0.0123 (8) 0.0013 (7) 0.0018 (6) −0.0015 (7)
C26 0.0146 (13) 0.0365 (15) 0.0163 (13) −0.0014 (11) −0.0014 (10) −0.0060 (12)
O27 0.0161 (9) 0.0126 (8) 0.0199 (9) 0.0052 (7) 0.0050 (7) 0.0070 (7)
C27 0.0283 (15) 0.0270 (14) 0.0291 (15) 0.0056 (12) 0.0082 (12) 0.0162 (12)
C31 0.0073 (10) 0.0126 (10) 0.0128 (11) 0.0009 (9) −0.0004 (8) −0.0017 (9)
C32 0.0092 (11) 0.0102 (10) 0.0131 (11) −0.0006 (9) −0.0004 (9) −0.0008 (9)
C33 0.0118 (11) 0.0079 (10) 0.0124 (11) 0.0010 (9) 0.0030 (9) 0.0017 (9)
C34 0.0101 (11) 0.0097 (10) 0.0123 (11) 0.0004 (9) −0.0003 (9) −0.0017 (9)
C35 0.0074 (11) 0.0118 (11) 0.0137 (12) 0.0013 (9) −0.0005 (9) −0.0012 (9)
O35 0.0111 (8) 0.0106 (7) 0.0125 (8) 0.0002 (6) −0.0015 (6) 0.0001 (6)
O32 0.0087 (8) 0.0153 (8) 0.0142 (8) 0.0009 (7) 0.0029 (6) 0.0009 (7)
O33 0.0105 (8) 0.0141 (8) 0.0142 (8) 0.0013 (7) −0.0024 (6) 0.0036 (7)
O34 0.0103 (8) 0.0193 (9) 0.0165 (9) 0.0017 (7) −0.0022 (7) 0.0008 (7)
C36 0.0204 (13) 0.0152 (12) 0.0201 (13) −0.0065 (10) 0.0006 (10) −0.0002 (10)

Geometric parameters (Å, º)

OW1—H101 0.875 (15) C23—O23 1.432 (3)
OW1—H102 0.879 (15) C23—C24 1.517 (3)
OW2—H201 0.871 (15) C23—H23 1.0000
OW2—H202 0.869 (15) C24—O24 1.426 (3)
OW3—H301 0.878 (14) C24—C25 1.510 (3)
OW3—H302 0.877 (14) C24—H24 1.0000
OW4—H401 0.883 (15) C25—O25 1.442 (3)
OW4—H402 0.883 (15) C25—C26 1.504 (3)
OW5—H501 0.867 (15) C25—H25 1.0000
OW5—H502 0.873 (14) O23—C31 1.400 (3)
C11—O15 1.409 (3) O24—H24A 0.8400
C11—O22 1.412 (3) C26—H26A 0.9800
C11—C12 1.519 (3) C26—H26B 0.9800
C11—H11 1.0000 C26—H26C 0.9800
C12—O12 1.429 (3) O27—C27 1.428 (3)
C12—C13 1.519 (3) C27—H27A 0.9800
C12—H12 1.0000 C27—H27B 0.9800
C13—O13 1.435 (3) C27—H27C 0.9800
C13—C14 1.507 (3) C31—O35 1.423 (3)
C13—H13 1.0000 C31—C32 1.512 (3)
C14—O14 1.417 (3) C31—H31 1.0000
C14—C15 1.532 (3) C32—O32 1.429 (3)
C14—H14 1.0000 C32—C33 1.519 (3)
C15—O15 1.451 (3) C32—H32 1.0000
C15—C16 1.507 (3) C33—O33 1.419 (3)
C15—H15 1.0000 C33—C34 1.529 (3)
O12—H12A 0.8400 C33—H33 1.0000
O13—H13A 0.8400 C34—O34 1.419 (3)
O14—H14A 0.8400 C34—C35 1.527 (3)
C16—H16A 0.9800 C34—H34 1.0000
C16—H16B 0.9800 C35—O35 1.451 (3)
C16—H16C 0.9800 C35—C36 1.505 (3)
C21—O27 1.405 (3) C35—H35 1.0000
C21—O25 1.419 (3) O32—H32A 0.8400
C21—C22 1.521 (3) O33—H33A 0.8400
C21—H21 1.0000 O34—H34A 0.8400
C22—O22 1.434 (3) C36—H36A 0.9800
C22—C23 1.525 (3) C36—H36B 0.9800
C22—H22 1.0000 C36—H36C 0.9800
H101—OW1—H102 106 (2) C25—C24—C23 107.07 (19)
H201—OW2—H202 109 (2) O24—C24—H24 110.2
H301—OW3—H302 107 (2) C25—C24—H24 110.2
H401—OW4—H402 100 (2) C23—C24—H24 110.2
H501—OW5—H502 111 (2) O25—C25—C26 108.12 (19)
O15—C11—O22 113.08 (18) O25—C25—C24 108.40 (17)
O15—C11—C12 110.89 (18) C26—C25—C24 113.5 (2)
O22—C11—C12 108.63 (17) O25—C25—H25 108.9
O15—C11—H11 108.0 C26—C25—H25 108.9
O22—C11—H11 108.0 C24—C25—H25 108.9
C12—C11—H11 108.0 C31—O23—C23 112.64 (17)
O12—C12—C13 111.41 (18) C24—O24—H24A 109.5
O12—C12—C11 104.15 (17) C21—O25—C25 114.75 (17)
C13—C12—C11 109.73 (18) C25—C26—H26A 109.5
O12—C12—H12 110.5 C25—C26—H26B 109.5
C13—C12—H12 110.5 H26A—C26—H26B 109.5
C11—C12—H12 110.5 C25—C26—H26C 109.5
O13—C13—C14 110.90 (19) H26A—C26—H26C 109.5
O13—C13—C12 108.14 (18) H26B—C26—H26C 109.5
C14—C13—C12 109.94 (19) C21—O27—C27 111.92 (19)
O13—C13—H13 109.3 O27—C27—H27A 109.5
C14—C13—H13 109.3 O27—C27—H27B 109.5
C12—C13—H13 109.3 H27A—C27—H27B 109.5
O14—C14—C13 109.53 (18) O27—C27—H27C 109.5
O14—C14—C15 109.00 (18) H27A—C27—H27C 109.5
C13—C14—C15 109.94 (19) H27B—C27—H27C 109.5
O14—C14—H14 109.5 O23—C31—O35 111.35 (18)
C13—C14—H14 109.5 O23—C31—C32 108.77 (18)
C15—C14—H14 109.5 O35—C31—C32 110.42 (18)
O15—C15—C16 106.72 (19) O23—C31—H31 108.7
O15—C15—C14 109.51 (17) O35—C31—H31 108.7
C16—C15—C14 112.6 (2) C32—C31—H31 108.7
O15—C15—H15 109.3 O32—C32—C31 109.59 (18)
C16—C15—H15 109.3 O32—C32—C33 112.85 (18)
C14—C15—H15 109.3 C31—C32—C33 109.72 (18)
C11—O15—C15 114.07 (17) O32—C32—H32 108.2
C12—O12—H12A 109.5 C31—C32—H32 108.2
C13—O13—H13A 109.5 C33—C32—H32 108.2
C14—O14—H14A 109.5 O33—C33—C32 109.45 (18)
C15—C16—H16A 109.5 O33—C33—C34 112.62 (18)
C15—C16—H16B 109.5 C32—C33—C34 110.77 (18)
H16A—C16—H16B 109.5 O33—C33—H33 107.9
C15—C16—H16C 109.5 C32—C33—H33 107.9
H16A—C16—H16C 109.5 C34—C33—H33 107.9
H16B—C16—H16C 109.5 O34—C34—C35 111.48 (18)
O27—C21—O25 112.73 (18) O34—C34—C33 108.79 (18)
O27—C21—C22 107.14 (19) C35—C34—C33 109.19 (17)
O25—C21—C22 112.34 (19) O34—C34—H34 109.1
O27—C21—H21 108.2 C35—C34—H34 109.1
O25—C21—H21 108.2 C33—C34—H34 109.1
C22—C21—H21 108.2 O35—C35—C36 107.24 (18)
O22—C22—C21 110.84 (18) O35—C35—C34 108.53 (18)
O22—C22—C23 108.53 (17) C36—C35—C34 113.29 (19)
C21—C22—C23 109.54 (18) O35—C35—H35 109.2
O22—C22—H22 109.3 C36—C35—H35 109.2
C21—C22—H22 109.3 C34—C35—H35 109.2
C23—C22—H22 109.3 C31—O35—C35 113.29 (16)
C11—O22—C22 113.20 (16) C32—O32—H32A 109.5
O23—C23—C24 110.01 (18) C33—O33—H33A 109.5
O23—C23—C22 111.45 (17) C34—O34—H34A 109.5
C24—C23—C22 110.88 (18) C35—C36—H36A 109.5
O23—C23—H23 108.1 C35—C36—H36B 109.5
C24—C23—H23 108.1 H36A—C36—H36B 109.5
C22—C23—H23 108.1 C35—C36—H36C 109.5
O24—C24—C25 108.90 (17) H36A—C36—H36C 109.5
O24—C24—C23 110.37 (18) H36B—C36—H36C 109.5
O15—C11—C12—O12 63.1 (2) C22—C23—C24—C25 −60.4 (2)
O22—C11—C12—O12 −172.08 (17) O24—C24—C25—O25 −178.52 (18)
O15—C11—C12—C13 −56.3 (2) C23—C24—C25—O25 62.1 (2)
O22—C11—C12—C13 68.6 (2) O24—C24—C25—C26 −58.4 (3)
O12—C12—C13—O13 62.0 (2) C23—C24—C25—C26 −177.72 (19)
C11—C12—C13—O13 176.82 (17) C24—C23—O23—C31 −113.6 (2)
O12—C12—C13—C14 −59.2 (2) C22—C23—O23—C31 122.95 (19)
C11—C12—C13—C14 55.6 (2) O27—C21—O25—C25 −65.9 (2)
O13—C13—C14—O14 64.7 (2) C22—C21—O25—C25 55.2 (2)
C12—C13—C14—O14 −175.75 (17) C26—C25—O25—C21 174.83 (19)
O13—C13—C14—C15 −175.54 (17) C24—C25—O25—C21 −61.7 (2)
C12—C13—C14—C15 −56.0 (2) O25—C21—O27—C27 −72.3 (2)
O14—C14—C15—O15 176.01 (17) C22—C21—O27—C27 163.6 (2)
C13—C14—C15—O15 55.9 (2) C23—O23—C31—O35 −76.1 (2)
O14—C14—C15—C16 −65.4 (2) C23—O23—C31—C32 162.03 (16)
C13—C14—C15—C16 174.51 (19) O23—C31—C32—O32 −169.04 (17)
O22—C11—O15—C15 −63.2 (2) O35—C31—C32—O32 68.5 (2)
C12—C11—O15—C15 59.1 (2) O23—C31—C32—C33 66.5 (2)
C16—C15—O15—C11 179.25 (18) O35—C31—C32—C33 −55.9 (2)
C14—C15—O15—C11 −58.6 (2) O32—C32—C33—O33 56.2 (2)
O27—C21—C22—O22 −165.21 (16) C31—C32—C33—O33 178.75 (18)
O25—C21—C22—O22 70.5 (2) O32—C32—C33—C34 −68.5 (2)
O27—C21—C22—C23 75.1 (2) C31—C32—C33—C34 54.0 (2)
O25—C21—C22—C23 −49.3 (2) O33—C33—C34—O34 59.9 (2)
O15—C11—O22—C22 −72.0 (2) C32—C33—C34—O34 −177.17 (18)
C12—C11—O22—C22 164.44 (18) O33—C33—C34—C35 −178.26 (18)
C21—C22—O22—C11 91.8 (2) C32—C33—C34—C35 −55.3 (2)
C23—C22—O22—C11 −147.87 (18) O34—C34—C35—O35 177.68 (17)
O22—C22—C23—O23 55.3 (2) C33—C34—C35—O35 57.5 (2)
C21—C22—C23—O23 176.42 (18) O34—C34—C35—C36 −63.3 (2)
O22—C22—C23—C24 −67.6 (2) C33—C34—C35—C36 176.44 (19)
C21—C22—C23—C24 53.5 (2) O23—C31—O35—C35 −59.2 (2)
O23—C23—C24—O24 57.5 (2) C32—C31—O35—C35 61.8 (2)
C22—C23—C24—O24 −178.80 (17) C36—C35—O35—C31 174.92 (19)
O23—C23—C24—C25 175.84 (17) C34—C35—O35—C31 −62.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
OW1—H101···O33i 0.88 (3) 1.85 (3) 2.726 (2) 176 (2)
OW1—H102···OW3ii 0.88 (3) 1.95 (3) 2.802 (2) 162 (2)
OW1—H102···O32iii 0.88 (3) 2.55 (3) 2.976 (2) 110 (2)
OW2—H201···O12iv 0.88 (3) 2.03 (3) 2.875 (2) 163 (2)
OW2—H202···O35ii 0.87 (3) 2.08 (3) 2.877 (2) 153 (2)
OW3—H301···OW5 0.88 (3) 2.04 (3) 2.845 (2) 151 (2)
OW3—H302···O13v 0.88 (3) 1.96 (3) 2.836 (2) 176 (2)
OW4—H401···OW3 0.88 (3) 1.97 (3) 2.840 (2) 168 (2)
OW4—H402···OW1 0.88 (3) 1.92 (3) 2.771 (2) 160 (2)
OW5—H501···O33vi 0.87 (3) 2.07 (3) 2.918 (2) 168 (2)
OW5—H502···OW5vii 0.87 (3) 2.50 (3) 3.333 (2) 159 (2)
O12—H12A···O32iii 0.84 2.01 2.767 (2) 149
O13—H13A···O15ii 0.84 2.10 2.858 (2) 149
O14—H14A···O24iii 0.84 1.95 2.733 (2) 157
O24—H24A···OW2 0.84 1.88 2.722 (2) 176
O32—H32A···OW5viii 0.84 2.13 2.864 (2) 146
O33—H33A···O34i 0.84 1.91 2.684 (2) 152
O34—H34A···OW4 0.84 1.86 2.687 (2) 168

Symmetry codes: (i) −x+3/2, y−1/2, −z+1; (ii) x, y−1, z; (iii) x+1/2, y−1/2, z; (iv) x−1/2, y−1/2, z; (v) x, y+1, z; (vi) x+1/2, y+1/2, z; (vii) −x+2, y, −z+1; (viii) x−1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6841).

References

  1. Ansaruzzaman, M., Albert, M. J., Holme, T., Jansson, P.-E., Rahman, M. M. & Widmalm, G. (1996). Eur. J. Biochem. 237, 786–791. [DOI] [PubMed]
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Eklund, R., Lycknert, K., Söderman, P. & Widmalm, G. (2005). J. Phys. Chem. B, 109, 19936–19945. [DOI] [PubMed]
  6. Jonsson, K. H. M., Pendrill, R. & Widmalm, G. (2011). Magn. Reson. Chem. 49, 117–124. [DOI] [PubMed]
  7. Kulber-Kielb, J., Vinogradov, E., Chu, C. & Schneerson, R. (2007). Carbohydr. Res. 342, 643–647. [DOI] [PMC free article] [PubMed]
  8. Lindberg, B. (1998). Polysaccharides, edited by S. Dumitriu, pp. 237–273. New York: Marcel Dekker.
  9. Marie, C., Weintraub, A. & Widmalm, G. (1998). Eur. J. Biochem. 254, 378–381. [DOI] [PubMed]
  10. Perry, M. B. & MacLean, L. (2000). Eur. J. Biochem. 267, 2567–2572. [DOI] [PubMed]
  11. Säwén, E., Massad, T., Landersjö, C., Damberg, P. & Widmalm, G. (2010). Org. Biomol. Chem. 8, 3684–3695. [DOI] [PubMed]
  12. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. & Marth, J. (1999). Editors. Essentials of Glycobiology Cold Spring Harbor Laboratory Press. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027390/hb6841sup1.cif

e-68-o2221-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027390/hb6841Isup2.hkl

e-68-o2221-Isup2.hkl (142.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES