Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2286. doi: 10.1107/S1600536812029066

4-Nitro­phenol–2,4,6-triamino-1,3,5-triazine–water (2/1/1)

N Kanagathara a, G Chakkaravarthi b,*, M K Marchewka c, S Gunasekaran d, G Anbalagan e,*
PMCID: PMC3394065  PMID: 22798930

Abstract

In the title adduct, 2C6H5NO3·C3H6N6·H2O, the melamine and the two independent nitrophenol molecules are essentially planar, with maximum deviations of 0.0294 (10), 0.0706 (12) and 0.0742 (12) Å, respectively. In the crystal, N—H⋯N, O—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds link the components into a three-dimensional network. In addition, weak π–π inter­actions [centroid–centroid distances = 3.728 (3) and 3.749 (3) Å] are observed.

Related literature  

For applications of melamine, see: Cook et al. (2005); Rima et al. (2008). For a related structure, see: Cousson et al. (2005).graphic file with name e-68-o2286-scheme1.jpg

Experimental  

Crystal data  

  • 2C6H5NO3·C3H6N6·H2O

  • M r = 422.37

  • Triclinic, Inline graphic

  • a = 7.123 (5) Å

  • b = 10.577 (4) Å

  • c = 13.680 (5) Å

  • α = 68.256 (5)°

  • β = 88.772 (6)°

  • γ = 76.604 (5)°

  • V = 928.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.964, T max = 0.976

  • 21610 measured reflections

  • 5696 independent reflections

  • 4164 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.122

  • S = 1.03

  • 5696 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029066/lh5493sup1.cif

e-68-o2286-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029066/lh5493Isup2.hkl

e-68-o2286-Isup2.hkl (273.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029066/lh5493Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7i 0.90 (2) 1.76 (2) 2.6600 (18) 172 (2)
O4—H4⋯N5 0.91 (2) 1.87 (2) 2.7217 (16) 157 (2)
O7—H7A⋯N4 0.88 (2) 1.94 (2) 2.8020 (18) 166 (2)
O7—H7B⋯O2iv 0.84 (2) 2.22 (2) 3.0424 (18) 164 (2)
N6—H6A⋯O6ii 0.860 (18) 2.363 (19) 3.0276 (16) 134 (2)
N6—H6B⋯N3iii 0.845 (18) 2.235 (19) 3.080 (2) 178 (2)
N7—H7C⋯O6v 0.867 (17) 2.250 (17) 3.056 (2) 155 (2)
N7—H7D⋯O1v 0.894 (19) 2.049 (19) 2.8996 (17) 159 (2)
N8—H8A⋯O3 0.830 (17) 2.367 (18) 3.158 (2) 159 (2)
N8—H8B⋯O7iv 0.867 (19) 2.517 (18) 3.1890 (19) 135 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

Comment

Melamines are used in the production of melamine foam in polymeric cleaning (Rima et al., 2008) and as a chemical intermediate in plastics manufacturing (Cook et al., 2005). Here, we report the crystal structure of a the title compound. The asymmetric unit contains one melamine molecule, two independent nitrophenol molecules and one solvent water molecule.

The geometric parameters of the melamine molecule (I) (Fig. 1) are comparable with those determined by Cousson et al. (2005). The melamine and nitrophenol molecules are essentially planar, with a maximum deviation of -0.0294 (10) Å for atom N4 in the least square plane (N6/C13/C14/N7/N4/C15/N8/N5), -0.0706 (12) Å for atom O2 in the least square plane (O1/C1-C6/N1/O2/O3) and 0.0742 (12) Å for atom O5 in the least square plane (O4/C10/C11/C12/C7/C8/C9/N2/O5/O6).

In the crystal, O—H···N, N—H···O and O—H···O hydrogen bonds (Table 1 & Fig. 2) and π–π interactions [Cg1···Cg1 (1-x,-y,1-z) distance of 3.749 (3)Å; Cg1···Cg2 (x,-1+y,z) distance of 3.728 (3)Å and Cg2···Cg1 (x,1+y,z) distance of 3.728 (3)Å; Cg1 and Cg2 are the centroids of the rings (C1-C6) and (C7-C12), respectively] connect the components of the structure into a three-dimensional network.

Experimental

Melamine (1.2612g, 0.01 mmol) was dissolved in 200 ml of hot solution of distilled water. p-Nitrophenol (1.3911g, 0.01 mmol) was dissolved in 100 ml of distilled water separately. To the hot solution of melamine, p-nitrophenol solution was added gently, and stirred well for nearly five hours to get the homogenous solution and the mixture is allowed to evaporate. Within a few days tiny, transparent, yellowish crystals were formed. Recrystallization was carried out by using distilled water to get the pure crystal suitable for X-ray diffraction.

Refinement

The H atoms for aromatic C-H groups were positioned geometrically with C–H = 0.93 %A and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and all other H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.830 (17)-0.894 (19)Å and O—H = 0.84 (2)–0.91 (2)Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of (I), viewed along the a axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

2C6H5NO3·C3H6N6·H2O Z = 2
Mr = 422.37 F(000) = 440
Triclinic, P1 Dx = 1.510 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.123 (5) Å Cell parameters from 21610 reflections
b = 10.577 (4) Å θ = 2.1–30.7°
c = 13.680 (5) Å µ = 0.12 mm1
α = 68.256 (5)° T = 295 K
β = 88.772 (6)° Block, yellow
γ = 76.604 (5)° 0.30 × 0.20 × 0.20 mm
V = 928.9 (8) Å3

Data collection

Bruker Kappa APEXII diffractometer 5696 independent reflections
Radiation source: fine-focus sealed tube 4164 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω and φ scans θmax = 30.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→10
Tmin = 0.964, Tmax = 0.976 k = −15→15
21610 measured reflections l = −17→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.1276P] where P = (Fo2 + 2Fc2)/3
5696 reflections (Δ/σ)max < 0.001
311 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.33225 (16) 0.07164 (12) 0.40065 (10) 0.0341 (2)
C2 −0.24544 (16) −0.05332 (12) 0.48003 (9) 0.0348 (2)
H2 −0.1702 −0.0549 0.5354 0.042*
C3 −0.27246 (18) −0.17603 (13) 0.47577 (9) 0.0370 (3)
H3 −0.2136 −0.2617 0.5281 0.044*
C4 −0.38715 (18) −0.17217 (13) 0.39367 (10) 0.0378 (3)
C5 −0.47281 (18) −0.04548 (15) 0.31426 (10) 0.0423 (3)
H5 −0.5486 −0.0437 0.2590 0.051*
C6 −0.44573 (17) 0.07743 (14) 0.31718 (10) 0.0406 (3)
H6 −0.5024 0.1630 0.2642 0.049*
C7 −0.16167 (17) −0.02771 (12) 0.09893 (9) 0.0345 (2)
C8 −0.20456 (18) 0.11701 (13) 0.05818 (10) 0.0394 (3)
H8 −0.2801 0.1679 −0.0049 0.047*
C9 −0.13380 (19) 0.18491 (12) 0.11231 (10) 0.0387 (3)
H9 −0.1618 0.2824 0.0860 0.046*
C10 −0.02072 (16) 0.10786 (12) 0.20608 (9) 0.0331 (2)
C11 0.01838 (17) −0.03791 (12) 0.24690 (10) 0.0357 (2)
H11 0.0921 −0.0892 0.3105 0.043*
C12 −0.05206 (17) −0.10608 (12) 0.19311 (10) 0.0361 (3)
H12 −0.0263 −0.2035 0.2197 0.043*
C13 0.26472 (17) 0.45692 (12) 0.11080 (9) 0.0339 (2)
C14 0.36186 (16) 0.58004 (11) 0.19500 (9) 0.0305 (2)
C15 0.10688 (16) 0.48525 (11) 0.24878 (9) 0.0322 (2)
N1 −0.30636 (15) 0.20134 (11) 0.40532 (10) 0.0443 (3)
N2 −0.22950 (16) −0.10017 (13) 0.04030 (9) 0.0447 (3)
N3 0.38541 (14) 0.53546 (10) 0.11487 (7) 0.0338 (2)
N4 0.22586 (14) 0.55802 (10) 0.26462 (7) 0.0329 (2)
N5 0.12224 (14) 0.42855 (10) 0.17511 (8) 0.0359 (2)
N6 0.2906 (2) 0.40378 (15) 0.03568 (10) 0.0538 (3)
N7 0.48129 (18) 0.65529 (12) 0.20504 (10) 0.0444 (3)
N8 −0.03642 (18) 0.46571 (13) 0.31286 (10) 0.0465 (3)
O1 −0.42179 (18) −0.28988 (12) 0.38794 (9) 0.0562 (3)
O2 −0.21683 (16) 0.19698 (11) 0.48256 (9) 0.0566 (3)
O3 −0.37293 (19) 0.31089 (11) 0.33173 (12) 0.0782 (4)
O4 0.05318 (15) 0.16839 (10) 0.26239 (8) 0.0464 (2)
O5 −0.31476 (16) −0.03215 (14) −0.04647 (9) 0.0633 (3)
O6 −0.19394 (18) −0.22987 (12) 0.08023 (9) 0.0632 (3)
O7 0.23235 (17) 0.53850 (11) 0.47450 (9) 0.0526 (3)
H1 −0.357 (3) −0.370 (3) 0.4389 (18) 0.093 (7)*
H4 0.054 (3) 0.257 (2) 0.2186 (15) 0.071 (5)*
H6A 0.216 (3) 0.353 (2) 0.0306 (14) 0.063 (5)*
H6B 0.378 (3) 0.4227 (19) −0.0065 (14) 0.060 (5)*
H7A 0.243 (3) 0.555 (2) 0.4067 (17) 0.075 (6)*
H7B 0.252 (3) 0.607 (2) 0.4863 (17) 0.084 (6)*
H7C 0.576 (2) 0.6648 (17) 0.1643 (13) 0.054 (5)*
H7D 0.478 (2) 0.6781 (18) 0.2619 (15) 0.061 (5)*
H8A −0.119 (2) 0.4277 (18) 0.3014 (14) 0.058 (5)*
H8B −0.048 (2) 0.4994 (19) 0.3622 (15) 0.062 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0295 (5) 0.0342 (6) 0.0400 (6) −0.0099 (4) 0.0057 (4) −0.0143 (5)
C2 0.0353 (5) 0.0380 (6) 0.0333 (6) −0.0102 (5) 0.0008 (4) −0.0151 (5)
C3 0.0442 (6) 0.0343 (6) 0.0329 (6) −0.0094 (5) 0.0004 (5) −0.0129 (5)
C4 0.0430 (6) 0.0430 (7) 0.0358 (6) −0.0153 (5) 0.0064 (5) −0.0214 (5)
C5 0.0385 (6) 0.0548 (8) 0.0365 (6) −0.0139 (6) −0.0014 (5) −0.0188 (6)
C6 0.0329 (6) 0.0422 (7) 0.0389 (6) −0.0057 (5) −0.0015 (5) −0.0083 (5)
C7 0.0374 (6) 0.0389 (6) 0.0356 (6) −0.0163 (5) 0.0085 (5) −0.0195 (5)
C8 0.0446 (6) 0.0391 (6) 0.0321 (6) −0.0115 (5) −0.0014 (5) −0.0098 (5)
C9 0.0485 (7) 0.0279 (5) 0.0376 (6) −0.0099 (5) 0.0000 (5) −0.0093 (5)
C10 0.0371 (6) 0.0324 (5) 0.0344 (6) −0.0131 (4) 0.0055 (4) −0.0151 (5)
C11 0.0384 (6) 0.0312 (6) 0.0350 (6) −0.0080 (5) −0.0002 (5) −0.0096 (5)
C12 0.0418 (6) 0.0271 (5) 0.0409 (6) −0.0099 (4) 0.0070 (5) −0.0135 (5)
C13 0.0448 (6) 0.0315 (5) 0.0297 (5) −0.0136 (5) −0.0005 (5) −0.0134 (5)
C14 0.0394 (6) 0.0249 (5) 0.0281 (5) −0.0092 (4) −0.0024 (4) −0.0100 (4)
C15 0.0380 (6) 0.0265 (5) 0.0317 (5) −0.0073 (4) 0.0008 (4) −0.0105 (4)
N1 0.0362 (5) 0.0353 (5) 0.0616 (7) −0.0111 (4) 0.0050 (5) −0.0169 (5)
N2 0.0466 (6) 0.0588 (7) 0.0475 (6) −0.0282 (5) 0.0158 (5) −0.0326 (6)
N3 0.0446 (5) 0.0344 (5) 0.0288 (5) −0.0170 (4) 0.0032 (4) −0.0148 (4)
N4 0.0412 (5) 0.0300 (5) 0.0322 (5) −0.0104 (4) 0.0028 (4) −0.0160 (4)
N5 0.0440 (5) 0.0357 (5) 0.0360 (5) −0.0178 (4) 0.0036 (4) −0.0175 (4)
N6 0.0714 (8) 0.0706 (8) 0.0509 (7) −0.0428 (7) 0.0212 (6) −0.0438 (7)
N7 0.0581 (7) 0.0516 (7) 0.0411 (6) −0.0309 (6) 0.0084 (5) −0.0269 (5)
N8 0.0490 (6) 0.0521 (7) 0.0498 (7) −0.0222 (5) 0.0158 (5) −0.0265 (6)
O1 0.0798 (7) 0.0498 (6) 0.0523 (6) −0.0234 (6) −0.0038 (6) −0.0293 (5)
O2 0.0633 (6) 0.0503 (6) 0.0687 (7) −0.0224 (5) 0.0021 (5) −0.0310 (5)
O3 0.0767 (8) 0.0327 (5) 0.1046 (10) −0.0105 (5) −0.0261 (7) −0.0024 (6)
O4 0.0633 (6) 0.0399 (5) 0.0426 (5) −0.0224 (4) −0.0035 (4) −0.0166 (4)
O5 0.0642 (7) 0.0895 (9) 0.0527 (6) −0.0272 (6) −0.0010 (5) −0.0398 (6)
O6 0.0876 (8) 0.0572 (6) 0.0702 (7) −0.0425 (6) 0.0180 (6) −0.0382 (6)
O7 0.0817 (7) 0.0497 (6) 0.0421 (6) −0.0346 (5) 0.0143 (5) −0.0242 (5)

Geometric parameters (Å, º)

C1—C2 1.3766 (17) C13—N6 1.3333 (16)
C1—C6 1.3877 (18) C13—N3 1.3414 (14)
C1—N1 1.4501 (16) C13—N5 1.3421 (16)
C2—C3 1.3774 (17) C14—N7 1.3326 (15)
C2—H2 0.9300 C14—N3 1.3381 (14)
C3—C4 1.3857 (17) C14—N4 1.3418 (16)
C3—H3 0.9300 C15—N8 1.3335 (17)
C4—O1 1.3538 (15) C15—N4 1.3384 (15)
C4—C5 1.3852 (19) C15—N5 1.3416 (15)
C5—C6 1.3726 (19) N1—O3 1.2176 (16)
C5—H5 0.9300 N1—O2 1.2266 (16)
C6—H6 0.9300 N2—O5 1.2212 (17)
C7—C8 1.3804 (18) N2—O6 1.2386 (17)
C7—C12 1.3815 (18) N6—H6A 0.860 (18)
C7—N2 1.4518 (15) N6—H6B 0.845 (18)
C8—C9 1.3770 (17) N7—H7C 0.867 (17)
C8—H8 0.9300 N7—H7D 0.894 (19)
C9—C10 1.3871 (18) N8—H8A 0.830 (17)
C9—H9 0.9300 N8—H8B 0.867 (19)
C10—O4 1.3488 (14) O1—H1 0.90 (2)
C10—C11 1.3915 (17) O4—H4 0.91 (2)
C11—C12 1.3747 (17) O7—H7A 0.88 (2)
C11—H11 0.9300 O7—H7B 0.84 (2)
C12—H12 0.9300
C2—C1—C6 122.08 (11) C11—C12—C7 119.00 (11)
C2—C1—N1 118.88 (11) C11—C12—H12 120.5
C6—C1—N1 119.04 (11) C7—C12—H12 120.5
C1—C2—C3 118.59 (11) N6—C13—N3 116.17 (11)
C1—C2—H2 120.7 N6—C13—N5 118.22 (11)
C3—C2—H2 120.7 N3—C13—N5 125.61 (10)
C2—C3—C4 120.13 (11) N7—C14—N3 117.08 (11)
C2—C3—H3 119.9 N7—C14—N4 117.29 (10)
C4—C3—H3 119.9 N3—C14—N4 125.61 (10)
O1—C4—C5 117.44 (12) N8—C15—N4 117.07 (11)
O1—C4—C3 122.07 (12) N8—C15—N5 117.58 (11)
C5—C4—C3 120.48 (11) N4—C15—N5 125.34 (10)
C6—C5—C4 119.93 (12) O3—N1—O2 122.26 (12)
C6—C5—H5 120.0 O3—N1—C1 118.70 (12)
C4—C5—H5 120.0 O2—N1—C1 119.04 (11)
C5—C6—C1 118.78 (12) O5—N2—O6 122.77 (11)
C5—C6—H6 120.6 O5—N2—C7 119.29 (12)
C1—C6—H6 120.6 O6—N2—C7 117.92 (12)
C8—C7—C12 121.83 (10) C14—N3—C13 114.25 (10)
C8—C7—N2 119.31 (12) C15—N4—C14 114.57 (10)
C12—C7—N2 118.84 (11) C15—N5—C13 114.40 (9)
C9—C8—C7 118.99 (11) C13—N6—H6A 118.8 (12)
C9—C8—H8 120.5 C13—N6—H6B 119.2 (12)
C7—C8—H8 120.5 H6A—N6—H6B 122.0 (17)
C8—C9—C10 119.96 (11) C14—N7—H7C 118.7 (11)
C8—C9—H9 120.0 C14—N7—H7D 118.9 (11)
C10—C9—H9 120.0 H7C—N7—H7D 121.0 (15)
O4—C10—C9 122.67 (11) C15—N8—H8A 119.2 (12)
O4—C10—C11 117.05 (11) C15—N8—H8B 119.5 (11)
C9—C10—C11 120.27 (10) H8A—N8—H8B 121.1 (16)
C12—C11—C10 119.93 (12) C4—O1—H1 114.2 (14)
C12—C11—H11 120.0 C10—O4—H4 107.8 (12)
C10—C11—H11 120.0 H7A—O7—H7B 108.7 (19)
C6—C1—C2—C3 0.14 (18) C2—C1—N1—O3 175.39 (13)
N1—C1—C2—C3 179.25 (11) C6—C1—N1—O3 −5.47 (18)
C1—C2—C3—C4 −0.89 (18) C2—C1—N1—O2 −3.93 (17)
C2—C3—C4—O1 −178.18 (11) C6—C1—N1—O2 175.21 (11)
C2—C3—C4—C5 1.15 (18) C8—C7—N2—O5 3.71 (17)
O1—C4—C5—C6 178.73 (12) C12—C7—N2—O5 −174.89 (11)
C3—C4—C5—C6 −0.63 (19) C8—C7—N2—O6 −177.86 (11)
C4—C5—C6—C1 −0.12 (18) C12—C7—N2—O6 3.55 (17)
C2—C1—C6—C5 0.37 (18) N7—C14—N3—C13 178.15 (11)
N1—C1—C6—C5 −178.74 (11) N4—C14—N3—C13 −3.37 (16)
C12—C7—C8—C9 0.89 (18) N6—C13—N3—C14 −176.36 (11)
N2—C7—C8—C9 −177.66 (11) N5—C13—N3—C14 3.84 (17)
C7—C8—C9—C10 0.24 (19) N8—C15—N4—C14 −177.10 (11)
C8—C9—C10—O4 179.76 (12) N5—C15—N4—C14 4.13 (17)
C8—C9—C10—C11 −1.32 (18) N7—C14—N4—C15 178.19 (11)
O4—C10—C11—C12 −179.73 (11) N3—C14—N4—C15 −0.29 (16)
C9—C10—C11—C12 1.29 (18) N8—C15—N5—C13 177.51 (11)
C10—C11—C12—C7 −0.18 (18) N4—C15—N5—C13 −3.73 (17)
C8—C7—C12—C11 −0.92 (18) N6—C13—N5—C15 179.61 (12)
N2—C7—C12—C11 177.64 (10) N3—C13—N5—C15 −0.59 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O7i 0.90 (2) 1.76 (2) 2.6600 (18) 172 (2)
O4—H4···N5 0.91 (2) 1.87 (2) 2.7217 (16) 157 (2)
N6—H6A···O6ii 0.860 (18) 2.363 (19) 3.0276 (16) 134 (2)
N6—H6B···N3iii 0.845 (18) 2.235 (19) 3.080 (2) 178 (2)
O7—H7A···N4 0.88 (2) 1.94 (2) 2.8020 (18) 166 (2)
O7—H7B···O2iv 0.84 (2) 2.22 (2) 3.0424 (18) 164 (2)
N7—H7C···O6v 0.867 (17) 2.250 (17) 3.056 (2) 155 (2)
N7—H7D···O1v 0.894 (19) 2.049 (19) 2.8996 (17) 159 (2)
N8—H8A···O3 0.830 (17) 2.367 (18) 3.158 (2) 159 (2)
N8—H8B···O7iv 0.867 (19) 2.517 (18) 3.1890 (19) 135 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z; (iv) −x, −y+1, −z+1; (v) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5493).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cook, H. A., Klampfl, C. W. & Buchberger, W. (2005). Electrophoresis, 26, 1576–1583. [DOI] [PubMed]
  3. Cousson, A., Nicolaï, B. & Fillaux, F. (2005). Acta Cryst. E61, o222–o224.
  4. Rima, J., Abourida, M., Xu, T., Cho, I. K. & Kyriacos, S. (2008). J. Food Compost. Anal. 22, 689–693.
  5. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029066/lh5493sup1.cif

e-68-o2286-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029066/lh5493Isup2.hkl

e-68-o2286-Isup2.hkl (273.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029066/lh5493Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES