Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):m954–m955. doi: 10.1107/S1600536812026827

{(S)-2-[({2-[1-(Anthracen-9-ylmeth­yl)pyrrolidine-2-carboxamido]­phen­yl}(phen­yl)methyl­idene)amino]­acetato(2−)-κ4 N,N′,N′′,O 1}nickel(II)

Zdeňka Padělková a,*, Alexander Popkov b, Milan Nádvorník a
PMCID: PMC3393209  PMID: 22807777

Abstract

The title compound, [Ni(C35H29N3O3)], includes a Schiff base ligand derived from (S)-1-[(anthracen-9-yl)meth­yl]-N-(2-benz­oyl­phen­yl)pyrrolidine-2-carboxamide and glycine. The NiII atom is coordinated by three N atoms [Ni—N = 1.937 (3), 1.850 (3) and 1.850 (3) Å] and one O atom [Ni—O = 1.859 (2) Å], resulting in a pseudo-square-planar coordination environment.

Related literature  

For preparation and evaluation of similar compounds in model reactions, see: Belokon et al. (1988); Kožíšek et al. (2004); Popkov et al. (2002, 2010). For an overview of application procedures, see: Popkov et al. (2005) and works cited therein. For NMR in solutions and similar highly unusual long-range spin–spin inter­actions, see: Jirman et al. (1998); Langer et al. (2007); Popkov et al. (1998, 2003). For the review of applications in positron emission tomography (PET), see: Popkov & De Spiegeleer (2012).graphic file with name e-68-0m954-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C35H29N3O3)]

  • M r = 598.32

  • Orthorhombic, Inline graphic

  • a = 8.9080 (5) Å

  • b = 16.5249 (12) Å

  • c = 18.6981 (13) Å

  • V = 2752.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 150 K

  • 0.31 × 0.26 × 0.14 mm

Data collection  

  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: Gaussian (Coppens, 1970) T min = 0.856, T max = 0.925

  • 23768 measured reflections

  • 6120 independent reflections

  • 5037 reflections with I > 2σ(I)

  • R int = 0.071

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.087

  • S = 1.19

  • 6120 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983), 2615 Friedel pairs

  • Flack parameter: −0.019 (14)

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwin­owski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812026827/im2378sup1.cif

e-68-0m954-sup1.cif (33.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026827/im2378Isup2.hkl

e-68-0m954-Isup2.hkl (293.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ZP and MN would like to thank the Faculty of Chemical Technology, University of Pardubice, for financial support of this work.

supplementary crystallographic information

Comment

Preparation of carbon-11 and fluorine-18 labelled amino acids for positron emission tomography (PET) is a big challenge for radiochemists. Due to time constrains brought by short half-life of the both isotopes, chromatographic separation steps should be avoided in PET radiosyntheses unless absolutely necessary (Popkov & De Spiegeleer (2012)). In order to meet this requirement we have been developing enantiospecific and highly enantioselective amino acid synthons based on Belokon's nickel(II) complexes (Belokon, et al., 1988). We already demonstrated the origin of the high stereoselectivity of the incorporation of amino acid side chains into these synthons. Intramolecular electrostatic interaction of the (substituted) benzyl ring and the nickel atom (Kožíšek et al., 2004) play a very important role as well as steric shielding by ortho-substituents of the benzyl ring (Popkov, et al., 2002). In this communication we describe the crystal structure of the nickel(II) complex with an electron-rich (9-antracenyl)methyl substituent at the nitrogen atom of the proline residue due to the fact that the Schiff base ligand was derived from (S)-N-(2-benzoylphenyl)1-(9-antracenyl)methylpyrrolidine-2-carboxamide and glycine (AMGK). This structure is a candidate for charge density measurement. Recently, we have shown such complexes to be very efficient synthons of glycine or alanine for the preparation of radiotracers for PET (Popkov et al., 2010). Similar complexes demonstrated highly unusual long-range spin-spin interactions in 13C-13C and 15N-13C NMR spectra (Jirman et al., 1998; Popkov et al., 1998; Langer et al., 2007). These interactions have been attributed to the influence of a diffuse electron cloud from the benzyl group (Popkov et al., 2003). We expect such interactions to be more pronounced in AMGK. For the future charge density measurement it is important that the conformation of AMGK described in this communication is similar to the conformation of the NiII complex of Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine (GK) (Popkov et al., 2003) which is the simplest complex in this class and which was comprehensively studied by diffraction of X-rays and by NMR in solutions (Popkov et al., 1998; Kožíšek et al., 2004). In the solid state both complexes exhibit no intra- or intermolecular hydrogen bonds. The crystal packing is therefore only determined by weak interactions. Packing of the molecules in both crystals as well as the conformations are very similar, although the conformations of the molecules themselves differ. In the [Ni(GK)] complex intramolecular interactions are weaker as exemplified by the distance Ni-C22 (2.9282 (17) Å) and the angles Ni-N1-C21 (107.53 (9)°) and N1-C21-C22 (114.04 (13)°), respectively. In the complex [Ni(AMGK)] (Fig. 1) much stronger intramolecular interactions are observed shown by the distance Ni-C22 (3.181 (3) Å) and the angles Ni-N1-C21 (111.82 (19)°) and N1-C21-C22 (114.9 (2)°). Bulkiness of the anthranylmethyl group practically does not change the conformation of the molecule. The interatomic distance Ni-C22 in the more sterically hindered complex is just 0.253Å longer which is not too big difference compared to the published data for (substituted) analogues of GK (Popkov et al. (2003)). MP2 ab initio modelling of the interactions is in progress.

Experimental

The title compound has been prepared according to a procedure described elsewhere (Popkov et al., 2010). Crystals suitable for the measurement were obtained by slow evaporation of the solvent from a solution of the title compound in toluene/methanol (2:1).

Refinement

Hydrogen atoms were mostly localized on a difference Fourier map, however to ensure uniformity of treatment of crystal, all hydrogen were recalculated into idealized positions (riding model) and assigned temperature factors Uiso(H) = 1.2 Ueq(pivot atom) or of 1.5 Ueq for the methyl moiety with C-H = 0.97, 0.98 and 0.93 Å for methylene, methine and hydrogen atoms at ain aromatic ring, respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compounds with displacement ellipsoids shown at the 50% probability level. H atoms are shown as spheres with arbitrary radii.

Crystal data

[Ni(C35H29N3O3)] F(000) = 1248
Mr = 598.32 Dx = 1.444 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 23827 reflections
a = 8.9080 (5) Å θ = 1–27.5°
b = 16.5249 (12) Å µ = 0.75 mm1
c = 18.6981 (13) Å T = 150 K
V = 2752.4 (3) Å3 Block, red
Z = 4 0.31 × 0.26 × 0.14 mm

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer 6120 independent reflections
Radiation source: fine-focus sealed tube 5037 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.071
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 1.6°
φ and ω scans to fill the Ewald sphere h = −11→10
Absorption correction: gaussian (Coppens, 1970) k = −19→21
Tmin = 0.856, Tmax = 0.925 l = −22→24
23768 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0124P)2 + 2.2393P] where P = (Fo2 + 2Fc2)/3
S = 1.19 (Δ/σ)max = 0.001
6120 reflections Δρmax = 0.32 e Å3
379 parameters Δρmin = −0.38 e Å3
0 restraints Absolute structure: Flack (1983), 2615 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.019 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.24182 (5) 0.29142 (2) 0.341302 (19) 0.01922 (9)
O2 0.3360 (2) 0.30227 (14) 0.42952 (11) 0.0254 (5)
N3 0.0779 (3) 0.34255 (16) 0.38193 (14) 0.0205 (6)
N1 0.4180 (3) 0.24291 (16) 0.29833 (14) 0.0210 (6)
N2 0.1482 (3) 0.27289 (15) 0.25450 (14) 0.0211 (6)
O3 0.2972 (2) 0.34356 (15) 0.54199 (12) 0.0308 (6)
O1 0.1528 (3) 0.17305 (14) 0.16634 (15) 0.0376 (6)
C7 −0.0029 (4) 0.3172 (2) 0.15323 (19) 0.0258 (7)
H7 0.0546 0.2854 0.1227 0.031*
C14 −0.2558 (4) 0.36460 (18) 0.43374 (16) 0.0243 (6)
H14 −0.2499 0.3085 0.4308 0.029*
C5 0.2084 (3) 0.2090 (2) 0.21725 (17) 0.0246 (7)
C20 0.2548 (4) 0.33210 (17) 0.48055 (15) 0.0226 (6)
C18 −0.1673 (4) 0.4966 (2) 0.3992 (2) 0.0295 (8)
H18 −0.1027 0.5289 0.3726 0.035*
C12 −0.0396 (3) 0.37223 (18) 0.34982 (18) 0.0210 (7)
C13 −0.1571 (4) 0.41254 (19) 0.39428 (17) 0.0210 (7)
C6 0.0284 (4) 0.3172 (2) 0.22744 (18) 0.0216 (7)
C21 0.5180 (3) 0.3056 (2) 0.26366 (17) 0.0249 (7)
H21A 0.5682 0.3362 0.3009 0.030*
H21B 0.5947 0.2777 0.2364 0.030*
C4 0.3570 (4) 0.18159 (19) 0.24694 (18) 0.0248 (7)
H4 0.4284 0.1733 0.2078 0.030*
C22 0.4380 (4) 0.3641 (2) 0.21447 (18) 0.0258 (8)
C2 0.4126 (4) 0.1213 (2) 0.36427 (19) 0.0315 (8)
H2A 0.3359 0.1345 0.3992 0.038*
H2B 0.4709 0.0757 0.3816 0.038*
C15 −0.3628 (4) 0.4004 (2) 0.47780 (19) 0.0300 (8)
H15 −0.4290 0.3684 0.5039 0.036*
C11 −0.0600 (4) 0.36713 (19) 0.27272 (17) 0.0210 (7)
C9 −0.2021 (4) 0.4135 (2) 0.16876 (19) 0.0297 (8)
H9 −0.2780 0.4452 0.1493 0.036*
C1 0.5114 (3) 0.1935 (2) 0.34910 (18) 0.0258 (7)
H1A 0.5331 0.2235 0.3925 0.031*
H1B 0.6051 0.1771 0.3270 0.031*
C16 −0.3702 (4) 0.4840 (2) 0.4825 (2) 0.0352 (9)
H16 −0.4409 0.5080 0.5123 0.042*
C8 −0.1158 (4) 0.3641 (2) 0.12543 (19) 0.0291 (8)
H8 −0.1348 0.3628 0.0765 0.035*
C30 0.3486 (5) 0.4049 (2) 0.0956 (2) 0.0354 (9)
C10 −0.1745 (4) 0.4141 (2) 0.24071 (19) 0.0262 (7)
H10 −0.2332 0.4471 0.2697 0.031*
C24 0.3850 (5) 0.4572 (2) 0.3174 (2) 0.0379 (10)
H24 0.4428 0.4251 0.3476 0.045*
C35 0.4320 (4) 0.3507 (2) 0.13999 (18) 0.0276 (8)
C19 0.0938 (4) 0.3502 (2) 0.45967 (17) 0.0264 (8)
H19A 0.0265 0.3128 0.4835 0.032*
H19B 0.0678 0.4047 0.4743 0.032*
C34 0.5118 (4) 0.2865 (3) 0.10405 (19) 0.0364 (8)
H34 0.5675 0.2500 0.1310 0.044*
C28 0.2807 (4) 0.4858 (2) 0.1981 (2) 0.0341 (9)
C23 0.3690 (4) 0.4337 (2) 0.2440 (2) 0.0283 (8)
C3 0.3427 (4) 0.1027 (2) 0.2911 (2) 0.0319 (8)
H3A 0.2380 0.0877 0.2963 0.038*
H3B 0.3956 0.0586 0.2679 0.038*
C17 −0.2732 (5) 0.5318 (2) 0.4430 (2) 0.0355 (9)
H17 −0.2786 0.5878 0.4464 0.043*
C25 0.3180 (5) 0.5244 (2) 0.3438 (3) 0.0540 (12)
H25 0.3341 0.5394 0.3911 0.065*
C33 0.5074 (5) 0.2784 (3) 0.0321 (2) 0.0535 (12)
H33 0.5601 0.2363 0.0107 0.064*
C31 0.3485 (6) 0.3928 (3) 0.0199 (2) 0.0557 (13)
H31 0.2938 0.4279 −0.0089 0.067*
C29 0.2727 (5) 0.4695 (2) 0.1259 (2) 0.0407 (10)
H29 0.2140 0.5025 0.0969 0.049*
C26 0.2233 (6) 0.5723 (3) 0.2992 (3) 0.0592 (15)
H26 0.1728 0.6165 0.3183 0.071*
C27 0.2067 (4) 0.5540 (2) 0.2292 (3) 0.0501 (12)
H27 0.1455 0.5864 0.2009 0.060*
C32 0.4254 (6) 0.3324 (3) −0.0107 (2) 0.0650 (15)
H32 0.4247 0.3262 −0.0601 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02184 (17) 0.02218 (17) 0.01363 (16) 0.0019 (2) −0.00030 (18) −0.00127 (17)
O2 0.0269 (11) 0.0340 (14) 0.0153 (11) 0.0000 (11) −0.0023 (9) −0.0030 (11)
N3 0.0244 (14) 0.0227 (14) 0.0145 (14) 0.0016 (11) 0.0007 (11) −0.0004 (11)
N1 0.0241 (14) 0.0218 (14) 0.0170 (14) 0.0009 (11) 0.0001 (11) −0.0008 (11)
N2 0.0273 (14) 0.0218 (15) 0.0144 (13) 0.0023 (11) −0.0034 (11) −0.0012 (11)
O3 0.0336 (14) 0.0419 (15) 0.0170 (12) −0.0017 (11) −0.0014 (9) −0.0034 (11)
O1 0.0482 (14) 0.0312 (13) 0.0334 (15) 0.0079 (11) −0.0156 (13) −0.0145 (12)
C7 0.0321 (17) 0.0277 (18) 0.0176 (17) 0.0001 (14) −0.0030 (15) −0.0016 (15)
C14 0.0232 (15) 0.0272 (15) 0.0225 (15) −0.0020 (17) −0.0029 (16) 0.0003 (12)
C5 0.0318 (18) 0.0224 (15) 0.0197 (15) 0.0027 (15) −0.0005 (12) −0.0036 (15)
C20 0.0284 (15) 0.0231 (14) 0.0162 (14) 0.0000 (17) 0.0001 (17) 0.0004 (11)
C18 0.0340 (19) 0.0246 (18) 0.030 (2) 0.0003 (16) 0.0079 (16) 0.0028 (16)
C12 0.0255 (15) 0.0153 (15) 0.0220 (18) −0.0023 (13) 0.0019 (13) 0.0014 (14)
C13 0.0231 (16) 0.0236 (17) 0.0162 (16) 0.0008 (14) −0.0005 (13) 0.0021 (13)
C6 0.0266 (17) 0.0208 (17) 0.0173 (17) −0.0006 (13) 0.0010 (13) −0.0006 (13)
C21 0.0230 (16) 0.032 (2) 0.0196 (17) −0.0019 (15) 0.0011 (12) −0.0032 (15)
C4 0.0278 (17) 0.0281 (18) 0.0184 (17) 0.0051 (14) −0.0005 (14) −0.0070 (14)
C22 0.0250 (17) 0.030 (2) 0.0228 (18) −0.0053 (15) 0.0019 (14) 0.0034 (15)
C2 0.045 (2) 0.0235 (19) 0.026 (2) 0.0072 (16) 0.0020 (15) 0.0050 (14)
C15 0.0225 (17) 0.045 (2) 0.0225 (19) −0.0059 (16) 0.0019 (14) 0.0027 (16)
C11 0.0227 (16) 0.0197 (17) 0.0206 (17) −0.0029 (13) −0.0010 (13) 0.0024 (13)
C9 0.0333 (18) 0.0305 (18) 0.025 (2) 0.0022 (14) −0.0065 (14) 0.0060 (16)
C1 0.0287 (15) 0.0320 (19) 0.0165 (16) 0.0092 (14) −0.0006 (13) −0.0007 (15)
C16 0.0296 (19) 0.048 (2) 0.028 (2) 0.0051 (17) 0.0049 (16) −0.0073 (18)
C8 0.037 (2) 0.032 (2) 0.0185 (17) 0.0005 (16) −0.0059 (14) 0.0037 (15)
C30 0.044 (2) 0.032 (2) 0.029 (2) −0.0119 (18) −0.0077 (17) 0.0065 (17)
C10 0.0266 (17) 0.0279 (18) 0.0241 (19) 0.0023 (14) 0.0015 (14) 0.0037 (15)
C24 0.051 (2) 0.031 (2) 0.032 (2) −0.0039 (18) 0.0139 (18) −0.0006 (17)
C35 0.0278 (17) 0.035 (2) 0.0197 (19) −0.0051 (15) 0.0012 (13) 0.0035 (14)
C19 0.0296 (18) 0.034 (2) 0.0156 (17) 0.0082 (15) 0.0003 (13) −0.0015 (14)
C34 0.042 (2) 0.045 (2) 0.0228 (19) −0.004 (2) 0.0042 (15) −0.0018 (19)
C28 0.030 (2) 0.0249 (18) 0.047 (2) −0.0092 (15) 0.0032 (17) 0.0067 (16)
C23 0.0252 (17) 0.0260 (18) 0.034 (2) −0.0071 (15) 0.0066 (15) 0.0019 (16)
C3 0.033 (2) 0.0241 (18) 0.039 (2) 0.0053 (16) −0.0028 (16) −0.0011 (16)
C17 0.043 (2) 0.0275 (17) 0.037 (2) 0.0073 (18) 0.0062 (18) −0.0041 (15)
C25 0.080 (3) 0.038 (2) 0.043 (3) −0.004 (2) 0.029 (3) −0.006 (2)
C33 0.070 (3) 0.062 (3) 0.028 (2) −0.003 (3) 0.010 (2) −0.008 (2)
C31 0.080 (3) 0.061 (3) 0.025 (2) −0.013 (3) −0.018 (2) 0.015 (2)
C29 0.042 (2) 0.035 (2) 0.046 (2) −0.008 (2) −0.013 (2) 0.0141 (17)
C26 0.067 (4) 0.033 (2) 0.077 (4) 0.005 (2) 0.039 (3) −0.002 (2)
C27 0.041 (3) 0.033 (2) 0.076 (4) −0.0018 (18) 0.014 (2) 0.013 (2)
C32 0.103 (4) 0.076 (4) 0.015 (2) −0.019 (3) −0.008 (2) 0.001 (2)

Geometric parameters (Å, º)

Ni1—N2 1.850 (3) C15—H15 0.9300
Ni1—N3 1.850 (3) C11—C10 1.415 (4)
Ni1—O2 1.859 (2) C9—C10 1.368 (5)
Ni1—N1 1.937 (3) C9—C8 1.383 (5)
O2—C20 1.295 (4) C9—H9 0.9300
N3—C12 1.303 (4) C1—H1A 0.9701
N3—C19 1.466 (4) C1—H1B 0.9700
N1—C4 1.499 (4) C16—C17 1.384 (5)
N1—C1 1.503 (4) C16—H16 0.9300
N1—C21 1.512 (4) C8—H8 0.9300
N2—C5 1.374 (4) C30—C29 1.385 (6)
N2—C6 1.389 (4) C30—C35 1.429 (5)
O3—C20 1.224 (4) C30—C31 1.431 (6)
O1—C5 1.226 (4) C10—H10 0.9300
C7—C8 1.372 (5) C24—C25 1.354 (5)
C7—C6 1.415 (5) C24—C23 1.433 (5)
C7—H7 0.9300 C24—H24 0.9299
C14—C15 1.392 (5) C35—C34 1.442 (5)
C14—C13 1.395 (4) C19—H19A 0.9701
C14—H14 0.9299 C19—H19B 0.9701
C5—C4 1.505 (4) C34—C33 1.353 (5)
C20—C19 1.516 (5) C34—H34 0.9301
C18—C17 1.378 (5) C28—C29 1.379 (5)
C18—C13 1.394 (5) C28—C27 1.429 (6)
C18—H18 0.9300 C28—C23 1.447 (5)
C12—C11 1.455 (4) C3—H3A 0.9701
C12—C13 1.493 (4) C3—H3B 0.9700
C6—C11 1.421 (4) C17—H17 0.9299
C21—C22 1.513 (5) C25—C26 1.426 (7)
C21—H21A 0.9700 C25—H25 0.9300
C21—H21B 0.9700 C33—C32 1.403 (7)
C4—C3 1.548 (5) C33—H33 0.9300
C4—H4 0.9800 C31—C32 1.339 (7)
C22—C35 1.411 (5) C31—H31 0.9300
C22—C23 1.417 (5) C29—H29 0.9300
C2—C1 1.511 (5) C26—C27 1.350 (7)
C2—C3 1.534 (5) C26—H26 0.9300
C2—H2A 0.9701 C27—H27 0.9300
C2—H2B 0.9701 C32—H32 0.9300
C15—C16 1.386 (5)
N2—Ni1—N3 94.59 (12) C10—C9—H9 120.7
N2—Ni1—O2 176.00 (11) C8—C9—H9 120.5
N3—Ni1—O2 87.01 (11) N1—C1—C2 103.0 (3)
N2—Ni1—N1 86.14 (11) N1—C1—H1A 111.2
N3—Ni1—N1 177.26 (12) C2—C1—H1A 111.3
O2—Ni1—N1 92.43 (11) N1—C1—H1B 111.1
C20—O2—Ni1 116.0 (2) C2—C1—H1B 111.1
C12—N3—C19 120.2 (3) H1A—C1—H1B 109.2
C12—N3—Ni1 128.1 (2) C17—C16—C15 120.4 (3)
C19—N3—Ni1 111.7 (2) C17—C16—H16 119.9
C4—N1—C1 103.8 (2) C15—C16—H16 119.8
C4—N1—C21 113.7 (3) C7—C8—C9 121.2 (3)
C1—N1—C21 108.4 (2) C7—C8—H8 119.5
C4—N1—Ni1 104.59 (19) C9—C8—H8 119.2
C1—N1—Ni1 114.3 (2) C29—C30—C35 120.0 (3)
C21—N1—Ni1 111.8 (2) C29—C30—C31 120.8 (4)
C5—N2—C6 121.3 (3) C35—C30—C31 119.2 (4)
C5—N2—Ni1 113.3 (2) C9—C10—C11 122.8 (3)
C6—N2—Ni1 125.3 (2) C9—C10—H10 118.5
C8—C7—C6 121.1 (3) C11—C10—H10 118.7
C8—C7—H7 119.4 C25—C24—C23 121.8 (4)
C6—C7—H7 119.6 C25—C24—H24 119.4
C15—C14—C13 120.2 (3) C23—C24—H24 118.8
C15—C14—H14 119.8 C22—C35—C30 119.6 (3)
C13—C14—H14 120.0 C22—C35—C34 123.8 (3)
O1—C5—N2 127.5 (3) C30—C35—C34 116.5 (3)
O1—C5—C4 119.7 (3) N3—C19—C20 109.3 (3)
N2—C5—C4 112.8 (3) N3—C19—H19A 110.0
O3—C20—O2 125.3 (3) C20—C19—H19A 109.9
O3—C20—C19 120.2 (3) N3—C19—H19B 109.7
O2—C20—C19 114.4 (3) C20—C19—H19B 109.6
C17—C18—C13 120.3 (3) H19A—C19—H19B 108.3
C17—C18—H18 119.9 C33—C34—C35 121.5 (4)
C13—C18—H18 119.8 C33—C34—H34 119.4
N3—C12—C11 122.3 (3) C35—C34—H34 119.2
N3—C12—C13 118.3 (3) C29—C28—C27 121.9 (4)
C11—C12—C13 119.3 (3) C29—C28—C23 119.6 (4)
C18—C13—C14 119.3 (3) C27—C28—C23 118.5 (4)
C18—C13—C12 121.8 (3) C22—C23—C24 123.3 (3)
C14—C13—C12 118.9 (3) C22—C23—C28 119.2 (3)
N2—C6—C7 120.6 (3) C24—C23—C28 117.5 (3)
N2—C6—C11 121.0 (3) C2—C3—C4 105.9 (3)
C7—C6—C11 118.3 (3) C2—C3—H3A 110.6
N1—C21—C22 114.9 (3) C4—C3—H3A 110.4
N1—C21—H21A 108.8 C2—C3—H3B 110.5
C22—C21—H21A 108.6 C4—C3—H3B 110.7
N1—C21—H21B 108.4 H3A—C3—H3B 108.7
C22—C21—H21B 108.4 C18—C17—C16 120.2 (3)
H21A—C21—H21B 107.5 C18—C17—H17 119.7
N1—C4—C5 110.6 (3) C16—C17—H17 120.0
N1—C4—C3 104.9 (3) C24—C25—C26 120.1 (5)
C5—C4—C3 112.2 (3) C24—C25—H25 119.8
N1—C4—H4 109.7 C26—C25—H25 120.0
C5—C4—H4 109.7 C34—C33—C32 121.3 (5)
C3—C4—H4 109.6 C34—C33—H33 119.2
C35—C22—C23 119.7 (3) C32—C33—H33 119.5
C35—C22—C21 121.2 (3) C32—C31—C30 121.8 (4)
C23—C22—C21 119.1 (3) C32—C31—H31 119.1
C1—C2—C3 103.1 (3) C30—C31—H31 119.1
C1—C2—H2A 111.0 C28—C29—C30 121.7 (4)
C3—C2—H2A 111.1 C28—C29—H29 119.1
C1—C2—H2B 111.3 C30—C29—H29 119.3
C3—C2—H2B 111.1 C27—C26—C25 120.5 (4)
H2A—C2—H2B 109.1 C27—C26—H26 119.7
C16—C15—C14 119.6 (3) C25—C26—H26 119.8
C16—C15—H15 120.2 C26—C27—C28 121.4 (4)
C14—C15—H15 120.2 C26—C27—H27 119.2
C10—C11—C6 117.8 (3) C28—C27—H27 119.5
C10—C11—C12 118.5 (3) C31—C32—C33 119.8 (4)
C6—C11—C12 123.7 (3) C31—C32—H32 120.1
C10—C9—C8 118.8 (3) C33—C32—H32 120.1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2378).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Belokon, Y. N., Bakhmutov, V. I., Chernoglazova, N. I., Kochetkov, K. A., Vitt, S. V., Garbalinskaya, N. S. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 305–312.
  3. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hooft, R. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Jirman, J., Nádvorník, M., Sopková, J. & Popkov, A. (1998). Magn. Reson. Chem. 36, 351–355.
  7. Kožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510–516. [DOI] [PubMed]
  8. Langer, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911–917.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Popkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Coll. Czech. Chem. Commun. 70, 1397–1410.
  11. Popkov, A. & De Spiegeleer, B. (2012). Dalton Trans. 41, 1430–1440. [DOI] [PubMed]
  12. Popkov, A., Gee, A. D., Nádvorník, M. & Lyčka, A. (2002). Transition Met. Chem. 27, 884–887.
  13. Popkov, A., Hanusek, J., Čermák, J., Langer, V., Jirásko, R., Holčapek, M. & Nádvorník, M. (2010). J. Radioanal. Nucl. Chem. 285, 621–626.
  14. Popkov, A., Jirman, J., Nádvorník, M. & Manorik, P. A. (1998). Coll. Czech. Chem. Commun. 63, 990–994.
  15. Popkov, A., Langer, V., Manorik, P. A. & Weidlich, T. (2003). Transition Met. Chem. 28, 475–481.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812026827/im2378sup1.cif

e-68-0m954-sup1.cif (33.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026827/im2378Isup2.hkl

e-68-0m954-Isup2.hkl (293.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES