Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 23;68(Pt 7):m971. doi: 10.1107/S1600536812027997

[N,N′-Bis(2,6-dichloro­benzyl­idene)propane-1,3-diamine-κ2 N,N′]dibromidozinc

Aliakbar Dehno Khalaji a, Gholamhossein Grivani b, Mohammad Seyyedi b, Karla Fejfarová c,*, Michal Dušek c
PMCID: PMC3393222  PMID: 22807790

Abstract

In the title compound, [ZnBr2(C17H14Cl4N2)], the ZnII ion is bonded to two bromide ions and two N atoms of the diimine ligand and displays a moderately distorted tetra­hedral coordination geometry. The Schiff base ligand acts as a chelating ligand and coordinates to the ZnII atom via two N atoms.

Related literature  

For related structures, see: Khalaj et al. (2008, 2009); Saleh­zadeh et al. (2011); Khalaji et al. (2010, 2011, 2012). For properties and application of complexes of symmetric bidentate Schiff base ligands, see: Komatsu et al. (2007); Montazerozohori et al. (2011). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-0m971-scheme1.jpg

Experimental  

Crystal data  

  • [ZnBr2(C17H14Cl4N2)]

  • M r = 613.3

  • Monoclinic, Inline graphic

  • a = 17.0433 (3) Å

  • b = 9.3216 (2) Å

  • c = 13.6038 (2) Å

  • β = 97.313 (2)°

  • V = 2143.67 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.38 mm−1

  • T = 120 K

  • 0.33 × 0.28 × 0.10 mm

Data collection  

  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.5, T max = 1

  • 32456 measured reflections

  • 5469 independent reflections

  • 4344 reflections with I > 3σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 3σ(F 2)] = 0.023

  • wR(F 2) = 0.053

  • S = 1.32

  • 5469 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027997/bt5947sup1.cif

e-68-0m971-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027997/bt5947Isup2.hkl

e-68-0m971-Isup2.hkl (241.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—Br1 2.3599 (3)
Zn1—Br2 2.3371 (3)
Zn1—N1 2.0662 (16)
Zn1—N2 2.0628 (16)

Acknowledgments

We acknowledge the Golestan and Damghan Universities for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

supplementary crystallographic information

Comment

Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and thermal properties (Montazerozohori et al., 2011). There is substantial interest in the coordination chemistry of the zinc(II) ion (Khalaj et al., 2008, 2009; Salehzadeh et al.,2011; Khalaji et al.,2010, 2011, 2012).

The molecular structure of 1 with the atom-numbering scheme is presented in Fig. 1, and the bond lengths and angles are generally normal (Allen et al., 1987). The zinc(II) ion is coordinated by the bidentate Schiff-base ligand and two Br ions. Although a tetrahedral geometry might be expected for a four coordinated zinc(II) centre, the geometry around the zinc(II) ion is distorted by the bite angle N1—Zn1—N2 [90.24 (6)°] of the chelating ligand. On the contrary the Br1—Zn11—Br2 angle has opened up to 120.866 (11)°. The N—Zn—Br angles are also distorted from the tetrahedral values.

Experimental

To a stirring solution of the (2,6-Cl-ba)2en ligand (1 mmol, in 5 ml of chloroform) was added ZnBr2 (1 mmol) in 10 ml of methanol and the mixture was stirred for 10 min in air at room temperature and was then left at 273 K for several days without disturbance yielding suitable crystals that subsequently were filtered off and washed with Et2O.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms. The displacement coefficients Uiso(H) were set to 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of 1. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[ZnBr2(C17H14Cl4N2)] F(000) = 1192
Mr = 613.3 Dx = 1.900 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybc Cell parameters from 14022 reflections
a = 17.0433 (3) Å θ = 3.0–29.3°
b = 9.3216 (2) Å µ = 5.38 mm1
c = 13.6038 (2) Å T = 120 K
β = 97.313 (2)° Block, colourless
V = 2143.67 (7) Å3 0.33 × 0.28 × 0.10 mm
Z = 4

Data collection

Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector 5469 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4344 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 10.3784 pixels mm-1 θmax = 29.4°, θmin = 3.0°
Rotation method data acquisition using ω scans h = −21→23
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −12→12
Tmin = 0.5, Tmax = 1 l = −18→17
32456 measured reflections

Refinement

Refinement on F2 56 constraints
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.053 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.32 (Δ/σ)max = 0.002
5469 reflections Δρmax = 0.55 e Å3
235 parameters Δρmin = −0.43 e Å3
0 restraints

Special details

Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.778715 (13) −0.01264 (2) 0.739863 (16) 0.01974 (7)
Br1 0.815993 (14) −0.06312 (2) 0.909367 (15) 0.03043 (7)
Br2 0.768458 (12) 0.22386 (2) 0.682623 (15) 0.02510 (7)
Cl1 0.57897 (3) −0.18717 (6) 0.46139 (4) 0.03164 (17)
Cl2 0.49527 (3) −0.02131 (6) 0.81149 (4) 0.03069 (16)
Cl3 0.78647 (4) −0.01110 (6) 0.42235 (4) 0.03640 (18)
Cl4 1.01713 (4) −0.02162 (7) 0.73027 (4) 0.0435 (2)
N1 0.67043 (10) −0.11134 (16) 0.70285 (12) 0.0204 (5)
N2 0.83223 (9) −0.16701 (17) 0.66248 (11) 0.0190 (5)
C1 0.72353 (12) −0.3466 (2) 0.66028 (16) 0.0272 (6)
C2 0.67041 (12) −0.2659 (2) 0.72376 (16) 0.0273 (6)
C3 0.60879 (12) −0.0487 (2) 0.66383 (14) 0.0216 (6)
C4 0.52967 (11) −0.1151 (2) 0.63559 (15) 0.0219 (6)
C5 0.50947 (12) −0.1818 (2) 0.54428 (15) 0.0252 (6)
C6 0.43508 (13) −0.2408 (2) 0.51740 (17) 0.0321 (7)
C7 0.37960 (13) −0.2328 (2) 0.58284 (17) 0.0342 (7)
C8 0.39751 (12) −0.1666 (2) 0.67387 (17) 0.0306 (7)
C9 0.47174 (12) −0.1085 (2) 0.69829 (15) 0.0240 (6)
C10 0.81108 (12) −0.3168 (2) 0.68397 (14) 0.0218 (6)
C11 0.87837 (12) −0.1473 (2) 0.59844 (14) 0.0232 (6)
C12 0.90508 (12) −0.0029 (2) 0.57246 (14) 0.0223 (6)
C13 0.86796 (12) 0.0692 (2) 0.48978 (15) 0.0248 (6)
C14 0.89235 (13) 0.2026 (2) 0.46228 (17) 0.0308 (7)
C15 0.95599 (13) 0.2659 (2) 0.51856 (16) 0.0312 (7)
C16 0.99483 (13) 0.1988 (2) 0.60108 (16) 0.0300 (7)
C17 0.96911 (12) 0.0647 (2) 0.62674 (15) 0.0260 (6)
H1a 0.714222 −0.447812 0.664797 0.0326*
H1b 0.706896 −0.326754 0.591541 0.0326*
H2a 0.617401 −0.302232 0.710663 0.0327*
H2b 0.688664 −0.281934 0.792584 0.0327*
H3 0.613239 0.052004 0.650974 0.0259*
H6 0.422365 −0.286607 0.45416 0.0386*
H7 0.328059 −0.273674 0.564947 0.0411*
H8 0.358864 −0.161171 0.719285 0.0367*
H10a 0.827835 −0.337727 0.752531 0.0262*
H10b 0.840072 −0.381379 0.64704 0.0262*
H11 0.896906 −0.229113 0.56525 0.0278*
H14 0.865572 0.250488 0.405122 0.037*
H15 0.973645 0.35864 0.499922 0.0375*
H16 1.038872 0.244152 0.639989 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01828 (12) 0.01772 (12) 0.02378 (12) −0.00064 (9) 0.00483 (9) −0.00078 (9)
Br1 0.04287 (14) 0.02484 (11) 0.02295 (11) −0.00147 (9) 0.00178 (9) 0.00022 (8)
Br2 0.02661 (12) 0.01722 (10) 0.03323 (12) 0.00196 (8) 0.01065 (9) 0.00062 (8)
Cl1 0.0296 (3) 0.0355 (3) 0.0303 (3) 0.0012 (2) 0.0057 (2) −0.0026 (2)
Cl2 0.0303 (3) 0.0317 (3) 0.0313 (3) 0.0085 (2) 0.0086 (2) 0.0035 (2)
Cl3 0.0359 (3) 0.0301 (3) 0.0389 (3) 0.0017 (2) −0.0119 (3) −0.0036 (2)
Cl4 0.0394 (4) 0.0537 (4) 0.0335 (3) −0.0191 (3) −0.0102 (3) 0.0086 (3)
N1 0.0173 (8) 0.0191 (8) 0.0252 (8) 0.0008 (7) 0.0047 (7) 0.0012 (7)
N2 0.0159 (8) 0.0209 (8) 0.0194 (8) 0.0000 (7) −0.0008 (7) −0.0022 (7)
C1 0.0230 (11) 0.0162 (10) 0.0405 (12) −0.0015 (8) −0.0033 (9) 0.0002 (9)
C2 0.0165 (10) 0.0208 (10) 0.0439 (13) −0.0020 (8) 0.0016 (9) 0.0114 (9)
C3 0.0220 (11) 0.0187 (10) 0.0251 (10) 0.0001 (8) 0.0067 (9) −0.0002 (8)
C4 0.0161 (10) 0.0181 (10) 0.0312 (10) 0.0046 (8) 0.0019 (8) 0.0056 (8)
C5 0.0222 (11) 0.0218 (10) 0.0315 (11) 0.0032 (8) 0.0038 (9) 0.0042 (9)
C6 0.0275 (12) 0.0282 (11) 0.0387 (13) −0.0011 (9) −0.0034 (10) 0.0014 (10)
C7 0.0188 (11) 0.0308 (12) 0.0508 (15) −0.0022 (9) −0.0042 (10) 0.0084 (11)
C8 0.0193 (11) 0.0291 (11) 0.0444 (13) 0.0042 (9) 0.0078 (10) 0.0108 (10)
C9 0.0224 (11) 0.0212 (10) 0.0283 (10) 0.0059 (8) 0.0029 (9) 0.0060 (9)
C10 0.0210 (10) 0.0171 (9) 0.0270 (10) 0.0031 (8) 0.0015 (8) 0.0025 (8)
C11 0.0194 (10) 0.0253 (10) 0.0243 (10) 0.0003 (8) 0.0006 (8) −0.0043 (9)
C12 0.0207 (10) 0.0235 (10) 0.0238 (10) 0.0017 (8) 0.0075 (8) −0.0045 (8)
C13 0.0222 (11) 0.0244 (10) 0.0275 (10) 0.0028 (8) 0.0026 (9) −0.0071 (9)
C14 0.0345 (13) 0.0234 (11) 0.0352 (12) 0.0092 (9) 0.0067 (10) 0.0022 (9)
C15 0.0307 (12) 0.0211 (10) 0.0444 (13) −0.0022 (9) 0.0147 (11) −0.0012 (10)
C16 0.0254 (12) 0.0305 (12) 0.0355 (12) −0.0097 (9) 0.0090 (10) −0.0074 (10)
C17 0.0230 (11) 0.0325 (11) 0.0228 (10) −0.0038 (9) 0.0042 (9) −0.0024 (9)

Geometric parameters (Å, º)

Zn1—Br1 2.3599 (3) C6—C7 1.381 (3)
Zn1—Br2 2.3371 (3) C6—H6 0.96
Zn1—N1 2.0662 (16) C7—C8 1.383 (3)
Zn1—N2 2.0628 (16) C7—H7 0.96
N1—C2 1.469 (2) C8—C9 1.377 (3)
N1—C3 1.259 (2) C8—H8 0.96
N2—C10 1.481 (2) C10—H10a 0.96
N2—C11 1.259 (3) C10—H10b 0.96
C1—C2 1.526 (3) C11—C12 1.478 (3)
C1—C10 1.512 (3) C11—H11 0.96
C1—H1a 0.96 C12—C13 1.391 (3)
C1—H1b 0.96 C12—C17 1.388 (3)
C2—H2a 0.96 C13—C14 1.379 (3)
C2—H2b 0.96 C14—C15 1.378 (3)
C3—C4 1.489 (3) C14—H14 0.96
C3—H3 0.96 C15—C16 1.379 (3)
C4—C5 1.393 (3) C15—H15 0.96
C4—C9 1.386 (3) C16—C17 1.384 (3)
C5—C6 1.388 (3) C16—H16 0.96
Br1—Zn1—Br2 120.866 (11) C5—C6—H6 120.45
Br1—Zn1—N1 105.69 (5) C7—C6—H6 120.45
Br1—Zn1—N2 106.14 (4) C6—C7—C8 120.7 (2)
Br2—Zn1—N1 108.19 (4) C6—C7—H7 119.65
Br2—Zn1—N2 120.47 (4) C8—C7—H7 119.65
N1—Zn1—N2 90.24 (6) C7—C8—C9 118.9 (2)
Zn1—N1—C2 114.32 (12) C7—C8—H8 120.57
Zn1—N1—C3 124.61 (13) C9—C8—H8 120.57
C2—N1—C3 121.05 (16) C4—C9—C8 122.59 (19)
Zn1—N2—C10 115.00 (12) N2—C10—C1 112.92 (15)
Zn1—N2—C11 127.37 (14) N2—C10—H10a 109.47
C10—N2—C11 117.60 (17) N2—C10—H10b 109.47
C2—C1—C10 115.44 (16) C1—C10—H10a 109.47
C2—C1—H1a 109.47 C1—C10—H10b 109.47
C2—C1—H1b 109.47 H10a—C10—H10b 105.79
C10—C1—H1a 109.47 N2—C11—C12 122.46 (18)
C10—C1—H1b 109.47 N2—C11—H11 118.77
H1a—C1—H1b 102.77 C12—C11—H11 118.77
N1—C2—C1 111.04 (17) C11—C12—C13 120.71 (17)
N1—C2—H2a 109.47 C11—C12—C17 122.07 (17)
N1—C2—H2b 109.47 C13—C12—C17 117.19 (18)
C1—C2—H2a 109.47 C12—C13—C14 122.22 (18)
C1—C2—H2b 109.47 C13—C14—C15 118.60 (19)
H2a—C2—H2b 107.85 C13—C14—H14 120.7
N1—C3—C4 126.59 (18) C15—C14—H14 120.7
N1—C3—H3 116.71 C14—C15—C16 121.4 (2)
C4—C3—H3 116.71 C14—C15—H15 119.32
C3—C4—C5 121.91 (19) C16—C15—H15 119.32
C3—C4—C9 121.04 (17) C15—C16—C17 118.73 (19)
C5—C4—C9 117.01 (18) C15—C16—H16 120.63
C4—C5—C6 121.7 (2) C17—C16—H16 120.63
C5—C6—C7 119.1 (2) C12—C17—C16 121.89 (18)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5947).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Khalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018. [DOI] [PMC free article] [PubMed]
  6. Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890. [DOI] [PMC free article] [PubMed]
  7. Khalaji, A. D., Grivani, G., Jalali Akerdi, S., Stoeckli-Evans, H. & Das, D. (2012). J. Chem. Crystallogr. 42, 83–88.
  8. Khalaji, A. D., Jalali Akerdi, S., Grivani, G., Stoeckli-Evans, H. & Das, D. (2011). Russ. J. Coord. Chem. 37, 578–584.
  9. Khalaji, A. D., Weil, M., Grivani, G. & Jalali Akerdi, S. (2010). Monatsh. Chem. 141, 539–543.
  10. Komatsu, H., Ochiai, B., Hino, T. & Endo, T. (2007). J. Mol. Catal. A273, 289–297.
  11. Montazerozohori, M., Khani, S., Tavakol, H., Hojjati, A. & Kazemi, M. (2011). Spectrochim. Acta Part A, 81, 122–127. [DOI] [PubMed]
  12. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  13. Salehzadeh, S., Khalaj, M., Dehghanpour, S. & Tarmoradi, I. (2011). Acta Cryst. E67, m1556. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027997/bt5947sup1.cif

e-68-0m971-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027997/bt5947Isup2.hkl

e-68-0m971-Isup2.hkl (241.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES