Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Aug 4;3(8):627–640. doi: 10.1007/s13238-012-2057-y

Reactive carbonyl compounds (RCCs) cause aggregation and dysfunction of fibrinogen

Ya-Jie Xu 1, Min Qiang 1,2, Jin-Ling Zhang 1, Ying Liu 1, Rong-Qiao He 1,3,
PMCID: PMC4875355  PMID: 22836718

Abstract

Fibrinogen is a key protein involved in coagulation and its deposition on blood vessel walls plays an important role in the pathology of atherosclerosis. Although the causes of fibrinogen (fibrin) deposition have been studied in depth, little is known about the relationship between fibrinogen deposition and reactive carbonyl compounds (RCCs), compounds which are produced and released into the blood and react with plasma protein especially under conditions of oxidative stress and inflammation. Here, we investigated the effect of glycolaldehyde on the activity and deposition of fibrinogen compared with the common RCCs acrolein, methylglyoxal, glyoxal and malondialdehyde. At the same concentration (1 mmol/L), glycolaldehyde and acrolein had a stronger suppressive effect on fibrinogen activation than the other three RCCs. Fibrinogen aggregated when it was respectively incubated with glycolaldehyde and the other RCCs, as demonstrated by SDS-PAGE, electron microscopy and intrinsic fluorescence intensity measurements. Staining with Congo Red showed that glycolaldehyde- and acrolein-fibrinogen distinctly formed amyloid-like aggregations. Furthermore, the five RCCs, particularly glycolaldehyde and acrolein, delayed human plasma coagulation. Only glycolaldehyde showed a markedly suppressive effect on fibrinogenesis, none did the other four RCCs when their physiological blood concentrations were employyed, respectively. Taken together, it is glycolaldehyde that suppresses fibrinogenesis and induces protein aggregation most effectively, suggesting a putative pathological process for fibrinogen (fibrin) deposition in the blood.

Electronic Supplementary Material

The online version of this article (doi:10.1007/s13238-012-2057-y contains supplementary material, which is available to authorized users.

Keywords: fibrinogen, acrolein, glycolaldehyde, glyoxal, malondialdehyde, methylglyoxal

Electronic Supplementary Material

Footnotes

These authors contributed equally to the work.

Electronic Supplementary Material

The online version of this article (doi:10.1007/s13238-012-2057-y contains supplementary material, which is available to authorized users.

References

  1. Ahn H.J., Zamolodchikov D., Cortes-Canteli M., Norris E.H., Glickman J.F., Strickland S. Alzheimer’s disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc Natl Acad Sci U S A. 2010;107:21812–21817. doi: 10.1073/pnas.1010373107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altieri D.C., Duperray A., Plescia J., Thornton G.B., Languino L.R. Structural recognition of a novel fibrinogen gamma chain sequence (117–133) by intercellular adhesion molecule-1 mediates leukocyteendothelium interaction. J Bio Chem. 1995;270:696–699. doi: 10.1074/jbc.270.2.696. [DOI] [PubMed] [Google Scholar]
  3. Altieri D.C. Regulation of leukocyte-endothelium interaction by fibrinogen. Thromb Haemost. 1999;82:781–786. [PubMed] [Google Scholar]
  4. Andrades, M.E., Lorenzi, R., Berger, M., Guimarães, J.A., Moreira, J.C.F. and Dal-Pizzol., F. (2009). Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion. Chem Biol Interact 478–484. [DOI] [PubMed]
  5. Anderson M.M., Heinecke J.W. Production of N(epsilon)-(carboxymethyl)lysine is impaired in mice deficient in NADPH oxidase: a role for phagocyte-derived oxidants in the formation of advanced glycation end products during inflammation. Diabetes. 2003;52:2137–2143. doi: 10.2337/diabetes.52.8.2137. [DOI] [PubMed] [Google Scholar]
  6. Argraves W.S., Tanaka A., Smith E.P., Twal W.O., Argraves K.M., Fan D.P., Haudenschild C.C. Fibulin-1 and fibrinogen in human atherosclerotic lesions. Histochem Cell Biol. 2009;132:559–565. doi: 10.1007/s00418-009-0628-7. [DOI] [PubMed] [Google Scholar]
  7. Bunce L.A., Sporn L.A., Francis C.W. Endothelial cell spreading on fibrin requires fibrinopeptide B cleavage and amino acid residues 15–42 of the beta chain. J Clin Invest. 1992;89:842–850. doi: 10.1172/JCI115663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chalupowicz D.G., Chowdhury Z.A., Bach T.L., Barsigian C., Martinez J. Fibrin II induces endothelial cell capillary tube formation. J Cell Biol. 1995;130:207–215. doi: 10.1083/jcb.130.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. de Maat M.P., Nieuwenhuizen W., Knot E.A., van Buuren H.R., Swart G.R. Measuring plasma fibrinogen levels in patients with liver cirrhosis. The occurrence of proteolytic fibrin(ogen) degradation products and their influence on several fibrinogen assays. Thromb Res. 1995;78:353–362. doi: 10.1016/0049-3848(95)91463-U. [DOI] [PubMed] [Google Scholar]
  10. Diacovo T.G., Roth S.J., Buccola J.M., Bainton D.F., Springer T.A. Neutrophil rolling, arrest, and transmigration across activated, surfaceadherent platelets via sequential action of P-selectin and the β2-integrin CD11b/CD18. Blood. 1996;88:146–157. [PubMed] [Google Scholar]
  11. Doruk H., Kaptan K., Saglam M., Ateskan U., Beyan C., Nevruz O., Mas M.R., Kutlu M., Kocar I.H. The relationship between carotid atherosclerosis and platelet aggregation in elderly. Arch Gerontol Geriat. 2003;37:235–239. doi: 10.1016/S0167-4943(03)00050-5. [DOI] [PubMed] [Google Scholar]
  12. Duperray A., Languino L.R., Plescia J., McDowall A., Hogg N., Craig A.G., Berendt A.R., Altieri D.C. Molecular identification of a novel fibrinogen binding site on the first domain of ICAM-1 regulating leukocyteendothelium bridging. J Bio Chem. 1997;272:435–441. doi: 10.1074/jbc.272.1.435. [DOI] [PubMed] [Google Scholar]
  13. Fan S.T., Edgington T.S. Integrin regulation of leukocyte inflammatory functions. CD11b/CD18 enhancement of the tumor necrosis factor-alpha responses of monocytes. J Immunol. 1993;150:2972–2980. [PubMed] [Google Scholar]
  14. Forsyth C.B., Solovjov D.A., Ugarova D.A., Plow E.F. Integrin {alpha}M{beta}2-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med. 2001;193:1123–1134. doi: 10.1084/jem.193.10.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hantgan R.R., Hermans J. Assembly of fibrin. A light scattering study. J Biol Chem. 1979;254:11272–11281. [PubMed] [Google Scholar]
  16. Igarashi K., Ueda S., Yoshida K., Kashiwagi K. Polyamines in renal failure. Amino Acids. 2006;31:477–483. doi: 10.1007/s00726-006-0264-7. [DOI] [PubMed] [Google Scholar]
  17. Kamath S., Lip G.Y. Fibrinogen: biochemistry, epidemiology and determinants. QJM: Int J Med. 2003;96:711–729. doi: 10.1093/qjmed/hcg129. [DOI] [PubMed] [Google Scholar]
  18. Kawamura M., Heinecke J.W., Chait A. Increased uptake of alpha-hydroxy aldehyde-modified low density lipoprotein by macrophage scavenger receptors. J Lipid Res. 2000;41:1054–1059. [PubMed] [Google Scholar]
  19. Kourie J.I., Henry C.L. Protein aggregation and deposition: implications for ion channel formation and membrane damage. Croat Med J. 2001;42:359–374. [PubMed] [Google Scholar]
  20. Kuhla B., Haase C., Flach K., Luth H.J., Arendt T., Munch G. Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J Biol Chem. 2007;282:6984–6991. doi: 10.1074/jbc.M609521200. [DOI] [PubMed] [Google Scholar]
  21. Languino L.R., Plescia J., Duperray A., Brian A.A., Plow E.F., Geltosky J.E., Altieri D.C. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell. 1993;73:1423–1434. doi: 10.1016/0092-8674(93)90367-Y. [DOI] [PubMed] [Google Scholar]
  22. Languino L.R., Duperray A., Joganic K.J., Fornaro M., Thornton G.B., Altieri D.C. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci U S A. 1995;92:1505–1509. doi: 10.1073/pnas.92.5.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lapolla A., Flamini R., Lupo A., Arico N.C., Rugiu C., Reitano R., Tubaro M., Ragazzi E., Seraglia R., Traldi P. Evaluation of glyoxal and methylglyoxal levels in uremic patients under peritoneal dialysis. Ann N Y Acad Sci. 2005;1043:217–224. doi: 10.1196/annals.1333.027. [DOI] [PubMed] [Google Scholar]
  24. Li F., Yang Z., Lu Y., Wei Y., Wang J., Yin D., He R. Malondialdehyde suppresses cerebral function by breaking homeostasis between excitation and inhibition in turtle Trachemys scripta. PLoS One. 2010;5:e15325. doi: 10.1371/journal.pone.0015325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liu C.Y., Nossel H.L., Kaplan K.L. The binding of thrombin by fibrin. J Bio Chem. 1979;254:10421–10425. [PubMed] [Google Scholar]
  26. Liu Y., Qiang M., Wei Y., He R. A novel molecular mechanism for nitrated {alpha}-synuclein-induced cell death. J Mol Cell Biol. 2011;3:239–249. doi: 10.1093/jmcb/mjr011. [DOI] [PubMed] [Google Scholar]
  27. Martinez J., Ferber A., Bach T.L., Yaen C.H. Interaction of Fibrin with VE-Cadherin. Ann N Y Acad Sci U S A. 2001;936:386–405. doi: 10.1111/j.1749-6632.2001.tb03524.x. [DOI] [PubMed] [Google Scholar]
  28. Nagai R., Matsumoto K., Ling X., Suzuki H., Araki T., Horiuchi S. Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes. 2000;49:1714–1723. doi: 10.2337/diabetes.49.10.1714. [DOI] [PubMed] [Google Scholar]
  29. Nie C.L., Wang X.S., Liu Y., Perrett S., He R.Q. Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neurosci. 2007;8:9. doi: 10.1186/1471-2202-8-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nielsen F., Mikkelsen B.B., Nielsen J.B., Andersen H.R., Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin Chem. 1997;43:1209–1214. [PubMed] [Google Scholar]
  31. Orr A.W., Sanders J.M., Bevard M., Coleman E., Sarembock I.J., Schwartz M.A. The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol. 2005;169:191–202. doi: 10.1083/jcb.200410073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Phillips D.R., Charo I.F., Parise L.V., Fitzgerald L.A. The platelet membrane glycoprotein llb-IIIa complex. Blood. 1988;71:831–843. [PubMed] [Google Scholar]
  33. Picklo M.J., Montine T.J., Amarnath V., Neely M.D. Carbonyl toxicology and Alzheimer’s disease. Toxicol Appl Pharmacol. 2002;184:187–197. doi: 10.1006/taap.2002.9506. [DOI] [PubMed] [Google Scholar]
  34. Reinke A.A., Gestwicki J.E. Insight into amyloid structure using chemical probes. Chem Biol Drug Des. 2011;77:399–411. doi: 10.1111/j.1747-0285.2011.01110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Riedel T., Suttnar J., Brynda E., Houska M., Medved L., Dyr J.E. Fibrinopeptides A and B release in the process of surface fibrin formation. Blood. 2011;117:1700–1706. doi: 10.1182/blood-2010-08-300301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Perez J.R. Fibrin enhances the expression of IL-1 beta by human peripheral blood mononuclear cells. Implications in pulmonary inflammation. J Immunol. 1995;154:1879–1887. [PubMed] [Google Scholar]
  37. Rojas Quijano F.A., Morrow D., Wise B.M., Brancia F.L., Goux W.J. Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides. Biochem. 2006;45:4638–4652. doi: 10.1021/bi052226q. [DOI] [PubMed] [Google Scholar]
  38. Rubel C., Fernandez G.C., Dran G., Bompadre M.B., Isturiz M.A., Palermo M.S. Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol. 2001;166:2002–2010. doi: 10.4049/jimmunol.166.3.2002. [DOI] [PubMed] [Google Scholar]
  39. Rubel C., Fernandez G. C., Rosa F.A., Gómez S., Bompadre M.B., Coso O.A., Isturiz M.A., Palermo M.S. Soluble fibrinogen modulates neutrophil functionality through the activation of an extracellular signal-regulated kinase-dependent pathway. J Immunol. 2002;168:3527–3535. doi: 10.4049/jimmunol.168.7.3527. [DOI] [PubMed] [Google Scholar]
  40. Sans E., Delachanal E., Duperray A. Analysis of the roles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model: Implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway. J Immunol. 2001;166:544–551. doi: 10.4049/jimmunol.166.1.544. [DOI] [PubMed] [Google Scholar]
  41. Sidelmann J.J., Gram J., Jespersen J., Kluft C. Fibrin clot formation and lysis: basic mechanisms. Seminars in Thromb Haemost. 2000;26:605–618. doi: 10.1055/s-2000-13216. [DOI] [PubMed] [Google Scholar]
  42. Siebenlist K.R., Mosesson M.W., Hernandez I., Bush L.A., Di Cera E., Shainoff J.R., Di Orio J.P., Stojanovic L. Studies on the basis for the properties of fibrin produced from fibrinogen-containing gamma’ chains. Blood. 2005;106:2730–2736. doi: 10.1182/blood-2005-01-0240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smiley S.T., King J.A., Hancock W.W. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J Immunol. 2001;167:2887–2894. doi: 10.4049/jimmunol.167.5.2887. [DOI] [PubMed] [Google Scholar]
  44. Stoll G., Bendszus M. Inflammation and atherosclerosis — Novel insights into plaque formation and destabilization. Stroke. 2006;37:1923–1932. doi: 10.1161/01.STR.0000226901.34927.10. [DOI] [PubMed] [Google Scholar]
  45. Szaba F.M., Smiley S.T. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood. 2002;99:1053–1059. doi: 10.1182/blood.V99.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Traverso N., Menini S., Maineni E.P., Patriarca S., Odetti P., Cottalasso D., Marinari U.M., Pronzato M.A. Malondialdehyde, a lipoperoxidation-derived aldehyde, can bring about secondary oxidative damage to proteins. J Gerontol a-Biol. 2004;59:890–895. doi: 10.1093/gerona/59.9.B890. [DOI] [PubMed] [Google Scholar]
  47. Tsou C.L. Kinetics of irreversible modification of enzyme activity. The effect of substrate on the rate of binding between I an enzyme and a modifier. Acta Biophysica Sinica. 1965;5:398–408. [Google Scholar]
  48. Tuluc F., Garcia A., Bredetean O., Meshki J., Kunapuli S.P. Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways American journal of physiology. Cell Physiol. 2004;287:C1264–C1272. doi: 10.1152/ajpcell.00177.2004. [DOI] [PubMed] [Google Scholar]
  49. Uchida K. Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med. 1999;9:109–113. doi: 10.1016/S1050-1738(99)00016-X. [DOI] [PubMed] [Google Scholar]
  50. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog lipid Res. 2003;42:318–343. doi: 10.1016/S0163-7827(03)00014-6. [DOI] [PubMed] [Google Scholar]
  51. Weisel J.W. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247–299. doi: 10.1016/S0065-3233(05)70008-5. [DOI] [PubMed] [Google Scholar]
  52. Zarkovic K. 4-Hdroxynonenal and neurodegenerative diseases. Mol Aspects Med. 2003;24:293–303. doi: 10.1016/S0098-2997(03)00024-4. [DOI] [PubMed] [Google Scholar]
  53. Zhou J., Jiang K., He R.Q., Han Y.M. Assays of thrombin, hirudin and lumbrokinase with light scattering in the solution of fibrinogen. Acta Biophysica Sinica. 1997;13:531–535. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES