Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 11;68(Pt 9):o2699. doi: 10.1107/S1600536812035131

2,6-Diacetyl­pyridine–resorcinol (1/1)

Quoc-Cuong Ton a, Michael Bolte b,*
PMCID: PMC3435719  PMID: 22969590

Abstract

The title co-crystal, C9H9NO2·C6H6O2, is composed of one 2,6-diacetyl­pyridine mol­ecule and one resorcinol mol­ecule as the asymmetric unit. In the 2,6-diacetyl­pyridine mol­ecule, the two carbonyl groups are anti­periplanar to the pyridine N atom. In the crystal, the 2,6-diacetyl­pyridine and resorcinol mol­ecules are connected by two O—H⋯O hydrogen bonds, forming planar chains of alternating components running along [120].

Related literature  

For background to 2,6-diacetyl­pyridine and resorcinol, see: Bacon & Lisher (1980); MacGillivray et al. (2000); Boldog et al. (2004); Matsumoto et al. (2006); Anwar et al. (2007); Friščić & MacGillivray (2009).graphic file with name e-68-o2699-scheme1.jpg

Experimental  

Crystal data  

  • C9H9NO2·C6H6O2

  • M r = 273.28

  • Triclinic, Inline graphic

  • a = 7.346 (2) Å

  • b = 7.866 (2) Å

  • c = 12.342 (3) Å

  • α = 101.61 (3)°

  • β = 90.51 (3)°

  • γ = 98.72 (3)°

  • V = 689.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.30 × 0.30 × 0.23 mm

Data collection  

  • Stoe IPDS II two-circle diffractometer

  • 9113 measured reflections

  • 2515 independent reflections

  • 1605 reflections with I > 2σ(I)

  • R int = 0.094

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.130

  • S = 0.93

  • 2515 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035131/ng5287sup1.cif

e-68-o2699-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035131/ng5287Isup2.hkl

e-68-o2699-Isup2.hkl (123.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035131/ng5287Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—HO3⋯O2 0.84 1.95 2.784 (2) 174
O4—HO4⋯O1i 0.84 1.96 2.802 (3) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Dr Guido Wagner for quantum-mechanical calculations of the relative stability of the 2,6-diacetyl­pyridine conformations and Professor Dr E. Egert for helpful discussions.

supplementary crystallographic information

Comment

The co-crystallization process between two components which possess either donor or acceptor hydrogen bond properties in order to obtain the AAA-DDD (A=Acceptor, D= Donor) hydrogen bond pattern containing two strong O—H···O hydrogen bonds and one weak C—H···O hydrogen bond (see Fig. 1, III) was the initial motivation of this research. Therefore, 2,6-diacetylpyridine, I, (CSD REFCODE: BARKAH) and resorcinol, II, (CSD REFCODE: RESORA03) have been chosen for this purpose. Compounds I and II can exist in three possible conformations (Anwar et al., 2007). Considering all possible hydrogen bonds between the two components, forming the complex as mentioned above is the most unfavourable constellation. The calculations of the three molecular conformations of 2,6-diacetylpyridine using quantum-mechanical calculations (Gaussian 03) predict that conformer Ia is the most stable, followed by Ib, and then Ic. The determination of the relative stability of resorcinol using quantum–mechanical density functional theory (DFT) said that conformer IIa is the most stable, followed by IIb, and then IIc. Two out of three conformers of resorcinol have been observed in neutron powder experiments (Bacon & Lisher, 1980). Beyond that all three conformations have been found in diverse multi-component-complexes (Boldog et al. 2004; MacGillivray et al. 2000; Friščić & MacGillivray, 2009; Matsumoto et al., 2006) where resorcinol showed these conformations. Another possibility of building a finite hydrogen bond network between the two components is highlighted as an example (V in Fig. 1), where different conformers are involved. The energy for the conversion of the relative stable conformers Ia and IIb to the least energetically favoured conformational states Ic and IIc is estimated to be approximately 60 kJ/mol. The co-crystal of the title compound (Fig. 2) in the constellation of Ia and IIb adopts a chain motif (IV in Fig. 1) (Fig. 3). The desired complex (III in Fig. 1) was not formed.

Experimental

The starting compounds 2,6-diacetylpyridine and resorcinol were purchased from Aldrich and Alfa Aesar which were used for co-crystallization experiments without purification. The starting compounds were dissolved in a 1:1 molecular ratio in ether and setlaid aside at room temperature. After several weeks adequate single crystals were obtained.

Refinement

All H atoms were refined using a riding model with fixed individual displacements parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl, O)] with Caromatic—H = 0.95 Å, Cmethyl = 0.98 Å, and O—H = 0.84 Å. The methyl and hydroxyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

Scheme showing 2,6-diacetylpyridine (I) and resorcinol (II), their possible conformations (Ia, Ib, Ic, IIa, IIb, IIc) and hydrogen bonded complexes of them (III, IV, V).

Fig. 2.

Fig. 2.

A perspective view of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 3.

Fig. 3.

A partial packing diagram of the title complex. Dashed line indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y, -z + 1.]

Crystal data

C9H9NO2·C6H6O2 Z = 2
Mr = 273.28 F(000) = 288
Triclinic, P1 Dx = 1.315 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.346 (2) Å Cell parameters from 9113 reflections
b = 7.866 (2) Å θ = 3.8–25.6°
c = 12.342 (3) Å µ = 0.10 mm1
α = 101.61 (3)° T = 173 K
β = 90.51 (3)° Block, colourless
γ = 98.72 (3)° 0.30 × 0.30 × 0.23 mm
V = 689.9 (3) Å3

Data collection

Stoe IPDS II two-circle diffractometer 1605 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.094
Graphite monochromator θmax = 25.4°, θmin = 3.2°
ω scans h = −8→8
9113 measured reflections k = −9→9
2515 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0671P)2] where P = (Fo2 + 2Fc2)/3
2515 reflections (Δ/σ)max < 0.001
185 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2051 (2) 0.1792 (2) 0.23716 (14) 0.0241 (4)
O1 0.0057 (2) −0.2404 (2) 0.27810 (15) 0.0442 (5)
O2 0.4266 (2) 0.6213 (2) 0.27795 (14) 0.0421 (5)
C1 0.2841 (2) 0.3381 (3) 0.29483 (18) 0.0244 (5)
C2 0.3093 (3) 0.3761 (3) 0.40993 (19) 0.0290 (5)
H2 0.3624 0.4906 0.4478 0.035*
C3 0.2559 (3) 0.2451 (3) 0.46820 (19) 0.0323 (5)
H3 0.2723 0.2674 0.5465 0.039*
C4 0.1779 (3) 0.0805 (3) 0.40953 (19) 0.0304 (5)
H4 0.1426 −0.0131 0.4469 0.036*
C5 0.1518 (2) 0.0537 (3) 0.29475 (18) 0.0243 (5)
C6 0.0608 (3) −0.1218 (3) 0.22941 (19) 0.0283 (5)
C7 0.0371 (3) −0.1447 (3) 0.1066 (2) 0.0385 (6)
H7A 0.0046 −0.2700 0.0734 0.058*
H7B 0.1526 −0.0971 0.0767 0.058*
H7C −0.0614 −0.0821 0.0892 0.058*
C8 0.3460 (3) 0.4780 (3) 0.22922 (19) 0.0277 (5)
C9 0.3053 (3) 0.4348 (3) 0.1071 (2) 0.0371 (6)
H9A 0.3542 0.5361 0.0752 0.056*
H9B 0.1717 0.4063 0.0924 0.056*
H9C 0.3634 0.3336 0.0735 0.056*
O3 0.5190 (2) 0.8749 (2) 0.15119 (15) 0.0440 (5)
HO3 0.4909 0.8049 0.1937 0.066*
O4 0.8147 (2) 1.4495 (2) 0.14755 (14) 0.0437 (5)
HO4 0.8697 1.5413 0.1891 0.066*
C11 0.6121 (3) 1.0305 (3) 0.2107 (2) 0.0292 (5)
C12 0.6507 (3) 1.0573 (3) 0.3241 (2) 0.0335 (6)
H12 0.6119 0.9671 0.3635 0.040*
C13 0.7473 (3) 1.2191 (3) 0.3788 (2) 0.0345 (6)
H13 0.7743 1.2385 0.4561 0.041*
C14 0.8046 (3) 1.3522 (3) 0.3220 (2) 0.0331 (6)
H14 0.8705 1.4616 0.3600 0.040*
C15 0.7642 (3) 1.3232 (3) 0.2090 (2) 0.0301 (5)
C16 0.6671 (3) 1.1633 (3) 0.1528 (2) 0.0331 (5)
H16 0.6386 1.1448 0.0757 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0187 (8) 0.0236 (10) 0.0286 (10) −0.0016 (7) 0.0019 (7) 0.0060 (8)
O1 0.0515 (10) 0.0298 (9) 0.0484 (11) −0.0118 (8) 0.0009 (8) 0.0150 (8)
O2 0.0482 (9) 0.0262 (9) 0.0464 (11) −0.0139 (7) −0.0057 (8) 0.0094 (8)
C1 0.0179 (9) 0.0252 (11) 0.0290 (13) −0.0012 (8) 0.0001 (8) 0.0063 (9)
C2 0.0250 (10) 0.0265 (12) 0.0322 (13) −0.0015 (9) −0.0039 (9) 0.0028 (10)
C3 0.0317 (11) 0.0377 (13) 0.0260 (13) 0.0021 (10) −0.0004 (9) 0.0057 (10)
C4 0.0265 (11) 0.0329 (12) 0.0337 (14) 0.0004 (9) 0.0051 (9) 0.0144 (11)
C5 0.0196 (10) 0.0227 (11) 0.0308 (13) 0.0002 (8) 0.0039 (9) 0.0084 (9)
C6 0.0219 (10) 0.0249 (12) 0.0379 (14) −0.0007 (8) 0.0021 (9) 0.0092 (10)
C7 0.0447 (13) 0.0281 (12) 0.0378 (15) −0.0061 (10) −0.0035 (11) 0.0041 (11)
C8 0.0224 (10) 0.0230 (11) 0.0372 (14) −0.0009 (8) 0.0005 (9) 0.0083 (10)
C9 0.0431 (13) 0.0334 (13) 0.0348 (14) −0.0040 (10) 0.0023 (11) 0.0147 (11)
O3 0.0492 (10) 0.0281 (9) 0.0507 (11) −0.0123 (7) −0.0084 (8) 0.0123 (8)
O4 0.0503 (10) 0.0290 (9) 0.0481 (11) −0.0114 (8) 0.0098 (8) 0.0121 (8)
C11 0.0219 (10) 0.0217 (11) 0.0431 (15) −0.0028 (8) 0.0019 (9) 0.0085 (10)
C12 0.0302 (11) 0.0306 (13) 0.0442 (16) 0.0046 (9) 0.0037 (10) 0.0180 (11)
C13 0.0319 (12) 0.0353 (13) 0.0367 (14) 0.0066 (10) −0.0023 (10) 0.0077 (11)
C14 0.0267 (11) 0.0250 (12) 0.0454 (16) 0.0010 (9) −0.0005 (10) 0.0043 (11)
C15 0.0230 (10) 0.0234 (11) 0.0446 (15) −0.0008 (8) 0.0091 (10) 0.0114 (10)
C16 0.0303 (11) 0.0321 (13) 0.0367 (14) 0.0011 (9) 0.0052 (10) 0.0095 (11)

Geometric parameters (Å, º)

N1—C5 1.343 (2) C9—H9A 0.9800
N1—C1 1.349 (3) C9—H9B 0.9800
O1—C6 1.229 (2) C9—H9C 0.9800
O2—C8 1.226 (3) O3—C11 1.371 (3)
C1—C2 1.396 (3) O3—HO3 0.8400
C1—C8 1.512 (3) O4—C15 1.377 (2)
C2—C3 1.383 (3) O4—HO4 0.8400
C2—H2 0.9500 C11—C12 1.392 (3)
C3—C4 1.385 (3) C11—C16 1.393 (3)
C3—H3 0.9500 C12—C13 1.397 (3)
C4—C5 1.397 (3) C12—H12 0.9500
C4—H4 0.9500 C13—C14 1.390 (3)
C5—C6 1.505 (3) C13—H13 0.9500
C6—C7 1.496 (3) C14—C15 1.389 (3)
C7—H7A 0.9800 C14—H14 0.9500
C7—H7B 0.9800 C15—C16 1.393 (3)
C7—H7C 0.9800 C16—H16 0.9500
C8—C9 1.494 (3)
C5—N1—C1 117.35 (18) C9—C8—C1 118.19 (19)
N1—C1—C2 122.87 (19) C8—C9—H9A 109.5
N1—C1—C8 117.01 (19) C8—C9—H9B 109.5
C2—C1—C8 120.12 (19) H9A—C9—H9B 109.5
C3—C2—C1 119.2 (2) C8—C9—H9C 109.5
C3—C2—H2 120.4 H9A—C9—H9C 109.5
C1—C2—H2 120.4 H9B—C9—H9C 109.5
C2—C3—C4 118.4 (2) C11—O3—HO3 109.5
C2—C3—H3 120.8 C15—O4—HO4 109.5
C4—C3—H3 120.8 O3—C11—C12 122.26 (19)
C3—C4—C5 119.18 (19) O3—C11—C16 117.1 (2)
C3—C4—H4 120.4 C12—C11—C16 120.7 (2)
C5—C4—H4 120.4 C11—C12—C13 118.9 (2)
N1—C5—C4 122.97 (19) C11—C12—H12 120.6
N1—C5—C6 116.70 (19) C13—C12—H12 120.6
C4—C5—C6 120.33 (18) C14—C13—C12 121.1 (2)
O1—C6—C7 122.1 (2) C14—C13—H13 119.4
O1—C6—C5 119.5 (2) C12—C13—H13 119.4
C7—C6—C5 118.45 (18) C15—C14—C13 119.2 (2)
C6—C7—H7A 109.5 C15—C14—H14 120.4
C6—C7—H7B 109.5 C13—C14—H14 120.4
H7A—C7—H7B 109.5 O4—C15—C14 122.4 (2)
C6—C7—H7C 109.5 O4—C15—C16 116.9 (2)
H7A—C7—H7C 109.5 C14—C15—C16 120.7 (2)
H7B—C7—H7C 109.5 C15—C16—C11 119.4 (2)
O2—C8—C9 122.80 (19) C15—C16—H16 120.3
O2—C8—C1 119.0 (2) C11—C16—H16 120.3
C5—N1—C1—C2 −0.9 (3) N1—C1—C8—O2 −176.44 (19)
C5—N1—C1—C8 179.22 (17) C2—C1—C8—O2 3.7 (3)
N1—C1—C2—C3 1.7 (3) N1—C1—C8—C9 3.7 (3)
C8—C1—C2—C3 −178.40 (19) C2—C1—C8—C9 −176.1 (2)
C1—C2—C3—C4 −0.4 (3) O3—C11—C12—C13 179.6 (2)
C2—C3—C4—C5 −1.6 (3) C16—C11—C12—C13 −0.7 (3)
C1—N1—C5—C4 −1.2 (3) C11—C12—C13—C14 0.1 (3)
C1—N1—C5—C6 178.93 (17) C12—C13—C14—C15 0.2 (3)
C3—C4—C5—N1 2.5 (3) C13—C14—C15—O4 179.3 (2)
C3—C4—C5—C6 −177.67 (19) C13—C14—C15—C16 0.2 (3)
N1—C5—C6—O1 −178.45 (19) O4—C15—C16—C11 −179.94 (19)
C4—C5—C6—O1 1.7 (3) C14—C15—C16—C11 −0.8 (3)
N1—C5—C6—C7 0.3 (3) O3—C11—C16—C15 −179.2 (2)
C4—C5—C6—C7 −179.55 (19) C12—C11—C16—C15 1.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—HO3···O2 0.84 1.95 2.784 (2) 174
O4—HO4···O1i 0.84 1.96 2.802 (3) 177

Symmetry code: (i) x+1, y+2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5287).

References

  1. Anwar, J., Chatchawalsaisin, J. & Kendrick, J. (2007). Angew. Chem. Int. Ed. Engl. 46, 5537–5540. [DOI] [PubMed]
  2. Bacon, G. E. & Lisher, E. J. (1980). Acta Cryst. B36, 1908–1916.
  3. Boldog, I., Rusanov, E. B., Sieler, J. & Domasevitch, K. V. (2004). New J. Chem. 28, 756–759.
  4. Friščić, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773–775. [DOI] [PubMed]
  5. MacGillivray, L. R., Reid, J. L. & Ripmeester, J. A. (2000). J. Am. Chem. Soc. 122, 7817–7818.
  6. Matsumoto, K., Harada, Y., Yamada, N., Kurata, H., Kawese, T. & Oda, M. (2006). Cryst. Growth Des. 6, 1083–1085.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stoe & Cie (2001). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035131/ng5287sup1.cif

e-68-o2699-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035131/ng5287Isup2.hkl

e-68-o2699-Isup2.hkl (123.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035131/ng5287Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES