Abstract
The title co-crystal, C9H9NO2·C6H6O2, is composed of one 2,6-diacetylpyridine molecule and one resorcinol molecule as the asymmetric unit. In the 2,6-diacetylpyridine molecule, the two carbonyl groups are antiperiplanar to the pyridine N atom. In the crystal, the 2,6-diacetylpyridine and resorcinol molecules are connected by two O—H⋯O hydrogen bonds, forming planar chains of alternating components running along [120].
Related literature
For background to 2,6-diacetylpyridine and resorcinol, see: Bacon & Lisher (1980 ▶); MacGillivray et al. (2000 ▶); Boldog et al. (2004 ▶); Matsumoto et al. (2006 ▶); Anwar et al. (2007 ▶); Friščić & MacGillivray (2009 ▶).
Experimental
Crystal data
C9H9NO2·C6H6O2
M r = 273.28
Triclinic,
a = 7.346 (2) Å
b = 7.866 (2) Å
c = 12.342 (3) Å
α = 101.61 (3)°
β = 90.51 (3)°
γ = 98.72 (3)°
V = 689.9 (3) Å3
Z = 2
Mo Kα radiation
μ = 0.10 mm−1
T = 173 K
0.30 × 0.30 × 0.23 mm
Data collection
Stoe IPDS II two-circle diffractometer
9113 measured reflections
2515 independent reflections
1605 reflections with I > 2σ(I)
R int = 0.094
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.130
S = 0.93
2515 reflections
185 parameters
H-atom parameters constrained
Δρmax = 0.19 e Å−3
Δρmin = −0.27 e Å−3
Data collection: X-AREA (Stoe & Cie, 2001 ▶); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035131/ng5287sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035131/ng5287Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812035131/ng5287Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O3—HO3⋯O2 | 0.84 | 1.95 | 2.784 (2) | 174 |
| O4—HO4⋯O1i | 0.84 | 1.96 | 2.802 (3) | 177 |
Symmetry code: (i)
.
Acknowledgments
We thank Dr Guido Wagner for quantum-mechanical calculations of the relative stability of the 2,6-diacetylpyridine conformations and Professor Dr E. Egert for helpful discussions.
supplementary crystallographic information
Comment
The co-crystallization process between two components which possess either donor or acceptor hydrogen bond properties in order to obtain the AAA-DDD (A=Acceptor, D= Donor) hydrogen bond pattern containing two strong O—H···O hydrogen bonds and one weak C—H···O hydrogen bond (see Fig. 1, III) was the initial motivation of this research. Therefore, 2,6-diacetylpyridine, I, (CSD REFCODE: BARKAH) and resorcinol, II, (CSD REFCODE: RESORA03) have been chosen for this purpose. Compounds I and II can exist in three possible conformations (Anwar et al., 2007). Considering all possible hydrogen bonds between the two components, forming the complex as mentioned above is the most unfavourable constellation. The calculations of the three molecular conformations of 2,6-diacetylpyridine using quantum-mechanical calculations (Gaussian 03) predict that conformer Ia is the most stable, followed by Ib, and then Ic. The determination of the relative stability of resorcinol using quantum–mechanical density functional theory (DFT) said that conformer IIa is the most stable, followed by IIb, and then IIc. Two out of three conformers of resorcinol have been observed in neutron powder experiments (Bacon & Lisher, 1980). Beyond that all three conformations have been found in diverse multi-component-complexes (Boldog et al. 2004; MacGillivray et al. 2000; Friščić & MacGillivray, 2009; Matsumoto et al., 2006) where resorcinol showed these conformations. Another possibility of building a finite hydrogen bond network between the two components is highlighted as an example (V in Fig. 1), where different conformers are involved. The energy for the conversion of the relative stable conformers Ia and IIb to the least energetically favoured conformational states Ic and IIc is estimated to be approximately 60 kJ/mol. The co-crystal of the title compound (Fig. 2) in the constellation of Ia and IIb adopts a chain motif (IV in Fig. 1) (Fig. 3). The desired complex (III in Fig. 1) was not formed.
Experimental
The starting compounds 2,6-diacetylpyridine and resorcinol were purchased from Aldrich and Alfa Aesar which were used for co-crystallization experiments without purification. The starting compounds were dissolved in a 1:1 molecular ratio in ether and setlaid aside at room temperature. After several weeks adequate single crystals were obtained.
Refinement
All H atoms were refined using a riding model with fixed individual displacements parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl, O)] with Caromatic—H = 0.95 Å, Cmethyl = 0.98 Å, and O—H = 0.84 Å. The methyl and hydroxyl groups were allowed to rotate but not to tip.
Figures
Fig. 1.
Scheme showing 2,6-diacetylpyridine (I) and resorcinol (II), their possible conformations (Ia, Ib, Ic, IIa, IIb, IIc) and hydrogen bonded complexes of them (III, IV, V).
Fig. 2.
A perspective view of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 3.
A partial packing diagram of the title complex. Dashed line indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y, -z + 1.]
Crystal data
| C9H9NO2·C6H6O2 | Z = 2 |
| Mr = 273.28 | F(000) = 288 |
| Triclinic, P1 | Dx = 1.315 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.346 (2) Å | Cell parameters from 9113 reflections |
| b = 7.866 (2) Å | θ = 3.8–25.6° |
| c = 12.342 (3) Å | µ = 0.10 mm−1 |
| α = 101.61 (3)° | T = 173 K |
| β = 90.51 (3)° | Block, colourless |
| γ = 98.72 (3)° | 0.30 × 0.30 × 0.23 mm |
| V = 689.9 (3) Å3 |
Data collection
| Stoe IPDS II two-circle diffractometer | 1605 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.094 |
| Graphite monochromator | θmax = 25.4°, θmin = 3.2° |
| ω scans | h = −8→8 |
| 9113 measured reflections | k = −9→9 |
| 2515 independent reflections | l = −14→14 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.130 | H-atom parameters constrained |
| S = 0.93 | w = 1/[σ2(Fo2) + (0.0671P)2] where P = (Fo2 + 2Fc2)/3 |
| 2515 reflections | (Δ/σ)max < 0.001 |
| 185 parameters | Δρmax = 0.19 e Å−3 |
| 0 restraints | Δρmin = −0.27 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.2051 (2) | 0.1792 (2) | 0.23716 (14) | 0.0241 (4) | |
| O1 | 0.0057 (2) | −0.2404 (2) | 0.27810 (15) | 0.0442 (5) | |
| O2 | 0.4266 (2) | 0.6213 (2) | 0.27795 (14) | 0.0421 (5) | |
| C1 | 0.2841 (2) | 0.3381 (3) | 0.29483 (18) | 0.0244 (5) | |
| C2 | 0.3093 (3) | 0.3761 (3) | 0.40993 (19) | 0.0290 (5) | |
| H2 | 0.3624 | 0.4906 | 0.4478 | 0.035* | |
| C3 | 0.2559 (3) | 0.2451 (3) | 0.46820 (19) | 0.0323 (5) | |
| H3 | 0.2723 | 0.2674 | 0.5465 | 0.039* | |
| C4 | 0.1779 (3) | 0.0805 (3) | 0.40953 (19) | 0.0304 (5) | |
| H4 | 0.1426 | −0.0131 | 0.4469 | 0.036* | |
| C5 | 0.1518 (2) | 0.0537 (3) | 0.29475 (18) | 0.0243 (5) | |
| C6 | 0.0608 (3) | −0.1218 (3) | 0.22941 (19) | 0.0283 (5) | |
| C7 | 0.0371 (3) | −0.1447 (3) | 0.1066 (2) | 0.0385 (6) | |
| H7A | 0.0046 | −0.2700 | 0.0734 | 0.058* | |
| H7B | 0.1526 | −0.0971 | 0.0767 | 0.058* | |
| H7C | −0.0614 | −0.0821 | 0.0892 | 0.058* | |
| C8 | 0.3460 (3) | 0.4780 (3) | 0.22922 (19) | 0.0277 (5) | |
| C9 | 0.3053 (3) | 0.4348 (3) | 0.1071 (2) | 0.0371 (6) | |
| H9A | 0.3542 | 0.5361 | 0.0752 | 0.056* | |
| H9B | 0.1717 | 0.4063 | 0.0924 | 0.056* | |
| H9C | 0.3634 | 0.3336 | 0.0735 | 0.056* | |
| O3 | 0.5190 (2) | 0.8749 (2) | 0.15119 (15) | 0.0440 (5) | |
| HO3 | 0.4909 | 0.8049 | 0.1937 | 0.066* | |
| O4 | 0.8147 (2) | 1.4495 (2) | 0.14755 (14) | 0.0437 (5) | |
| HO4 | 0.8697 | 1.5413 | 0.1891 | 0.066* | |
| C11 | 0.6121 (3) | 1.0305 (3) | 0.2107 (2) | 0.0292 (5) | |
| C12 | 0.6507 (3) | 1.0573 (3) | 0.3241 (2) | 0.0335 (6) | |
| H12 | 0.6119 | 0.9671 | 0.3635 | 0.040* | |
| C13 | 0.7473 (3) | 1.2191 (3) | 0.3788 (2) | 0.0345 (6) | |
| H13 | 0.7743 | 1.2385 | 0.4561 | 0.041* | |
| C14 | 0.8046 (3) | 1.3522 (3) | 0.3220 (2) | 0.0331 (6) | |
| H14 | 0.8705 | 1.4616 | 0.3600 | 0.040* | |
| C15 | 0.7642 (3) | 1.3232 (3) | 0.2090 (2) | 0.0301 (5) | |
| C16 | 0.6671 (3) | 1.1633 (3) | 0.1528 (2) | 0.0331 (5) | |
| H16 | 0.6386 | 1.1448 | 0.0757 | 0.040* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0187 (8) | 0.0236 (10) | 0.0286 (10) | −0.0016 (7) | 0.0019 (7) | 0.0060 (8) |
| O1 | 0.0515 (10) | 0.0298 (9) | 0.0484 (11) | −0.0118 (8) | 0.0009 (8) | 0.0150 (8) |
| O2 | 0.0482 (9) | 0.0262 (9) | 0.0464 (11) | −0.0139 (7) | −0.0057 (8) | 0.0094 (8) |
| C1 | 0.0179 (9) | 0.0252 (11) | 0.0290 (13) | −0.0012 (8) | 0.0001 (8) | 0.0063 (9) |
| C2 | 0.0250 (10) | 0.0265 (12) | 0.0322 (13) | −0.0015 (9) | −0.0039 (9) | 0.0028 (10) |
| C3 | 0.0317 (11) | 0.0377 (13) | 0.0260 (13) | 0.0021 (10) | −0.0004 (9) | 0.0057 (10) |
| C4 | 0.0265 (11) | 0.0329 (12) | 0.0337 (14) | 0.0004 (9) | 0.0051 (9) | 0.0144 (11) |
| C5 | 0.0196 (10) | 0.0227 (11) | 0.0308 (13) | 0.0002 (8) | 0.0039 (9) | 0.0084 (9) |
| C6 | 0.0219 (10) | 0.0249 (12) | 0.0379 (14) | −0.0007 (8) | 0.0021 (9) | 0.0092 (10) |
| C7 | 0.0447 (13) | 0.0281 (12) | 0.0378 (15) | −0.0061 (10) | −0.0035 (11) | 0.0041 (11) |
| C8 | 0.0224 (10) | 0.0230 (11) | 0.0372 (14) | −0.0009 (8) | 0.0005 (9) | 0.0083 (10) |
| C9 | 0.0431 (13) | 0.0334 (13) | 0.0348 (14) | −0.0040 (10) | 0.0023 (11) | 0.0147 (11) |
| O3 | 0.0492 (10) | 0.0281 (9) | 0.0507 (11) | −0.0123 (7) | −0.0084 (8) | 0.0123 (8) |
| O4 | 0.0503 (10) | 0.0290 (9) | 0.0481 (11) | −0.0114 (8) | 0.0098 (8) | 0.0121 (8) |
| C11 | 0.0219 (10) | 0.0217 (11) | 0.0431 (15) | −0.0028 (8) | 0.0019 (9) | 0.0085 (10) |
| C12 | 0.0302 (11) | 0.0306 (13) | 0.0442 (16) | 0.0046 (9) | 0.0037 (10) | 0.0180 (11) |
| C13 | 0.0319 (12) | 0.0353 (13) | 0.0367 (14) | 0.0066 (10) | −0.0023 (10) | 0.0077 (11) |
| C14 | 0.0267 (11) | 0.0250 (12) | 0.0454 (16) | 0.0010 (9) | −0.0005 (10) | 0.0043 (11) |
| C15 | 0.0230 (10) | 0.0234 (11) | 0.0446 (15) | −0.0008 (8) | 0.0091 (10) | 0.0114 (10) |
| C16 | 0.0303 (11) | 0.0321 (13) | 0.0367 (14) | 0.0011 (9) | 0.0052 (10) | 0.0095 (11) |
Geometric parameters (Å, º)
| N1—C5 | 1.343 (2) | C9—H9A | 0.9800 |
| N1—C1 | 1.349 (3) | C9—H9B | 0.9800 |
| O1—C6 | 1.229 (2) | C9—H9C | 0.9800 |
| O2—C8 | 1.226 (3) | O3—C11 | 1.371 (3) |
| C1—C2 | 1.396 (3) | O3—HO3 | 0.8400 |
| C1—C8 | 1.512 (3) | O4—C15 | 1.377 (2) |
| C2—C3 | 1.383 (3) | O4—HO4 | 0.8400 |
| C2—H2 | 0.9500 | C11—C12 | 1.392 (3) |
| C3—C4 | 1.385 (3) | C11—C16 | 1.393 (3) |
| C3—H3 | 0.9500 | C12—C13 | 1.397 (3) |
| C4—C5 | 1.397 (3) | C12—H12 | 0.9500 |
| C4—H4 | 0.9500 | C13—C14 | 1.390 (3) |
| C5—C6 | 1.505 (3) | C13—H13 | 0.9500 |
| C6—C7 | 1.496 (3) | C14—C15 | 1.389 (3) |
| C7—H7A | 0.9800 | C14—H14 | 0.9500 |
| C7—H7B | 0.9800 | C15—C16 | 1.393 (3) |
| C7—H7C | 0.9800 | C16—H16 | 0.9500 |
| C8—C9 | 1.494 (3) | ||
| C5—N1—C1 | 117.35 (18) | C9—C8—C1 | 118.19 (19) |
| N1—C1—C2 | 122.87 (19) | C8—C9—H9A | 109.5 |
| N1—C1—C8 | 117.01 (19) | C8—C9—H9B | 109.5 |
| C2—C1—C8 | 120.12 (19) | H9A—C9—H9B | 109.5 |
| C3—C2—C1 | 119.2 (2) | C8—C9—H9C | 109.5 |
| C3—C2—H2 | 120.4 | H9A—C9—H9C | 109.5 |
| C1—C2—H2 | 120.4 | H9B—C9—H9C | 109.5 |
| C2—C3—C4 | 118.4 (2) | C11—O3—HO3 | 109.5 |
| C2—C3—H3 | 120.8 | C15—O4—HO4 | 109.5 |
| C4—C3—H3 | 120.8 | O3—C11—C12 | 122.26 (19) |
| C3—C4—C5 | 119.18 (19) | O3—C11—C16 | 117.1 (2) |
| C3—C4—H4 | 120.4 | C12—C11—C16 | 120.7 (2) |
| C5—C4—H4 | 120.4 | C11—C12—C13 | 118.9 (2) |
| N1—C5—C4 | 122.97 (19) | C11—C12—H12 | 120.6 |
| N1—C5—C6 | 116.70 (19) | C13—C12—H12 | 120.6 |
| C4—C5—C6 | 120.33 (18) | C14—C13—C12 | 121.1 (2) |
| O1—C6—C7 | 122.1 (2) | C14—C13—H13 | 119.4 |
| O1—C6—C5 | 119.5 (2) | C12—C13—H13 | 119.4 |
| C7—C6—C5 | 118.45 (18) | C15—C14—C13 | 119.2 (2) |
| C6—C7—H7A | 109.5 | C15—C14—H14 | 120.4 |
| C6—C7—H7B | 109.5 | C13—C14—H14 | 120.4 |
| H7A—C7—H7B | 109.5 | O4—C15—C14 | 122.4 (2) |
| C6—C7—H7C | 109.5 | O4—C15—C16 | 116.9 (2) |
| H7A—C7—H7C | 109.5 | C14—C15—C16 | 120.7 (2) |
| H7B—C7—H7C | 109.5 | C15—C16—C11 | 119.4 (2) |
| O2—C8—C9 | 122.80 (19) | C15—C16—H16 | 120.3 |
| O2—C8—C1 | 119.0 (2) | C11—C16—H16 | 120.3 |
| C5—N1—C1—C2 | −0.9 (3) | N1—C1—C8—O2 | −176.44 (19) |
| C5—N1—C1—C8 | 179.22 (17) | C2—C1—C8—O2 | 3.7 (3) |
| N1—C1—C2—C3 | 1.7 (3) | N1—C1—C8—C9 | 3.7 (3) |
| C8—C1—C2—C3 | −178.40 (19) | C2—C1—C8—C9 | −176.1 (2) |
| C1—C2—C3—C4 | −0.4 (3) | O3—C11—C12—C13 | 179.6 (2) |
| C2—C3—C4—C5 | −1.6 (3) | C16—C11—C12—C13 | −0.7 (3) |
| C1—N1—C5—C4 | −1.2 (3) | C11—C12—C13—C14 | 0.1 (3) |
| C1—N1—C5—C6 | 178.93 (17) | C12—C13—C14—C15 | 0.2 (3) |
| C3—C4—C5—N1 | 2.5 (3) | C13—C14—C15—O4 | 179.3 (2) |
| C3—C4—C5—C6 | −177.67 (19) | C13—C14—C15—C16 | 0.2 (3) |
| N1—C5—C6—O1 | −178.45 (19) | O4—C15—C16—C11 | −179.94 (19) |
| C4—C5—C6—O1 | 1.7 (3) | C14—C15—C16—C11 | −0.8 (3) |
| N1—C5—C6—C7 | 0.3 (3) | O3—C11—C16—C15 | −179.2 (2) |
| C4—C5—C6—C7 | −179.55 (19) | C12—C11—C16—C15 | 1.0 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O3—HO3···O2 | 0.84 | 1.95 | 2.784 (2) | 174 |
| O4—HO4···O1i | 0.84 | 1.96 | 2.802 (3) | 177 |
Symmetry code: (i) x+1, y+2, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5287).
References
- Anwar, J., Chatchawalsaisin, J. & Kendrick, J. (2007). Angew. Chem. Int. Ed. Engl. 46, 5537–5540. [DOI] [PubMed]
- Bacon, G. E. & Lisher, E. J. (1980). Acta Cryst. B36, 1908–1916.
- Boldog, I., Rusanov, E. B., Sieler, J. & Domasevitch, K. V. (2004). New J. Chem. 28, 756–759.
- Friščić, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773–775. [DOI] [PubMed]
- MacGillivray, L. R., Reid, J. L. & Ripmeester, J. A. (2000). J. Am. Chem. Soc. 122, 7817–7818.
- Matsumoto, K., Harada, Y., Yamada, N., Kurata, H., Kawese, T. & Oda, M. (2006). Cryst. Growth Des. 6, 1083–1085.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stoe & Cie (2001). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035131/ng5287sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035131/ng5287Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812035131/ng5287Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



