Abstract
Evolvability of biopolymers is based on molecular coding. The molecular coding is represented by biopolymer function vs monomeric sequence relationship, that is, a proper fitness landscape on the sequence space. On the other hand, molecular coding is mostly realized by monomeric sequence vs biopolymer structure relationship. We suggest the evolution of evolvability based on flexible or multiplex coding originating from flexible or polymorphic conformation of evolving biopolymers. We report a finding supporting that the amino acid landscape of the standard genetic code for an amino acid property which is more important to the protein function gives higher value of an evolvability measure. We developed a promising molecular construct which realized genotype-phenotype linking in order to study the in vitroprotein evolution to clarify above mentioned protein evolvability.
Keywords: fitness landscape, genetic code, in vitrovirus, remote homolog proteins, sequence space
Full Text
The Full Text of this article is available as a PDF (107.1 KB).
References
- 1.Aita T., Husimi Y. Fitness Spectrum among Random Mutants on Mt. Fuji-type Fitness Landscape. J. Theor. Biol. 1996;182:469–485. doi: 10.1006/jtbi.1996.0189. [DOI] [PubMed] [Google Scholar]
- 2.Aita T., Uchiyama H., Inaoka T., Nakajima M., Kokubo T., Husimi Y. Analysis of a Local Fitness Landscape with a Model of the Rough Mt. Fuji-type Landscape: Application to Prolyl Endopeptidase and Thermolysin. Biopolyrrzers. 2000;54:64–79. doi: 10.1002/(SICI)1097-0282(200007)54:1<64::AID-BIP70>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- 3.Aita T., Urata S., Husimi Y. From Amino Acids Landscape to Protein Landscape: Analysis of Genetic Code in terms of Fitness Landscape. J. Mol. Evol. 2000;50:313–323. doi: 10.1007/pl00020999. [DOI] [PubMed] [Google Scholar]
- 4.Arden, D.H. and Sella, G.: The Impact of Message Mutation on the Fitness of a Genetic Code, Preliminary Proceedings DIMACSWorkshop on Evolution as Computation, 1999, pp. 175–180.
- 5.Eigen M., McCaskill J.S., Schuster P. The Molecular Quasispecies. Adv. Chem. Phys. 1989;75:149–263. [Google Scholar]
- 6.EIi, P., Tabuchi, I., Iizuka, F. and Husimi, Y.: unpublished data.
- 7.Furukawa K., et al. Junction Amino Acids Determine the Maturation Pathway of an Antibody. Immunity. 1999;11:329–338. doi: 10.1016/s1074-7613(00)80108-9. [DOI] [PubMed] [Google Scholar]
- 8.Husimi Y. Selection and Evolution of Bacteriophages in Cellstat. Adv. Biophys. 1989;25:1–43. doi: 10.1016/0065-227x(89)90003-8. [DOI] [PubMed] [Google Scholar]
- 9.Keefe A.D., Szostak J.W. Functional Proteins from a Random-Sequence Library. Nature. 2001;410:715–718. doi: 10.1038/35070613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Kurz K., Gu K., Al-Gawara A., Lohse P. cDNA-Protein Fusion. Chem. Bio. Chem. 2001;2:666–672. doi: 10.1002/1439-7633(20010903)2:9<666::aid-cbic666>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
- 11.Nemoto N., Husimi Y. A Model of Virus-Type Strategy in the Early Stage of Encoded Protein Evolution. J. Theor. Biol. 1995;176:67–77. doi: 10.1006/jtbi.1995.0177. [DOI] [PubMed] [Google Scholar]
- 12.Nemoto N., Miyamoto-Sato E., Husimi Y., Yanagawa H. In vitro Virus, FEBS Lett. 1997;414:405–408. doi: 10.1016/s0014-5793(97)01026-0. [DOI] [PubMed] [Google Scholar]
- 13.Roberts R.W., Szostak J.W. mRNA-Protein Fusion. Proc. Natl. Acad. Sci. USA. 1997;94:12297–12300. doi: 10.1073/pnas.94.23.12297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Schmitt T., Lehman N. Non-Unity Molecular Heritability Demonstrated by Continuous Evolution in vitro. Chem. Biol. 1999;6:857–869. doi: 10.1016/s1074-5521(00)80005-8. [DOI] [PubMed] [Google Scholar]
- 15.Schultes E.A., Bartel D.P. One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds. Science. 2001;289:448–452. doi: 10.1126/science.289.5478.448. [DOI] [PubMed] [Google Scholar]
- 16.Smith G.P. Filamentous Fusion Phage: Novel Expression Vectors that Display, Cloned Antigens on the Virion Surface. Science. 1985;228:1315–1317. doi: 10.1126/science.4001944. [DOI] [PubMed] [Google Scholar]
- 17.Tabuchi I., Soramoto S., Nemoto N., Husimi Y. An in vitroDNA Virus for in vitroProtein Evolution. FEBS Lett. 2001;508:309–312. doi: 10.1016/s0014-5793(01)03075-7. [DOI] [PubMed] [Google Scholar]
- 18.Wedmayer G.J., et al. Structural Insights into the Evolution of an Antibody Combining Site. Science. 1997;276:1665–1669. doi: 10.1126/science.276.5319.1665. [DOI] [PubMed] [Google Scholar]
