Abstract
To describe eukaryotic autosomes quantitatively and determine differences between them in terms of amino acid sequences of genes, functional classification of proteins, and complete DNA sequences, we applied two theoretical methods, the Proteome-vector method and the function of degree of disagreement (FDOD) method, that are based on function and sequence similarity respectively, to autosomes from nine eukaryotes. No matter what aspect of the autosome is considered, the autosomal differences within each organism were less than that between species. Our results show that eukaryotic autosomes resemble each other within a species while those from different organisms differ. We propose a hypothesis (named intra-species autosomal random shuffling) as an explanation for our results and suggest that lateral gene transfer (LGT) did not occur frequently during the evolution of eukarya.
Key words: autosomal similarity, Proteome-vector, FDOD, shuffling, genomic structure
Full Text
The Full Text of this article is available as a PDF (192.9 KB).
Contributor Information
Lunjiang Ling, Email: ling@sun5.ibp.ac.cn.
Runsheng Chen, Email: crs@sun5.ibp.ac.cn.
References
- 1.Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G. The Sequence of the Human Genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
- 2.Zhang M.Q. Computational Prediction of Eukaryotic Protein-Coding Genes. Nat. Rev. Genet. 2002;3:698–709. doi: 10.1038/nrg890. [DOI] [PubMed] [Google Scholar]
- 3.Pellegrini M., Marcotte E.M., Thompson M.J., Eisenberg D., Yeates T.O. Assigning Protein Functions by Comparative Genome Analysis: Protein Phylogenetic Profiles. Proc. Natl. Acad. Sci. U.S.A. 1999;96:4285–4288. doi: 10.1073/pnas.96.8.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Pennacchio L.A., Rubin E.M. Genomic Strategies to Identify Mammalian Regulatory Sequences. Nat. Rev. Genet. 2001;2:100–109. doi: 10.1038/35052548. [DOI] [PubMed] [Google Scholar]
- 5.Belle E.M., Smith N., Eyre-Walker A. Analysis of the Phylogenetic Distribution of Isochores in Vertebrates and a Test of the Thermal Stability Hypothesis. J. Mol. Evol. 2002;55:356–363. doi: 10.1007/s00239-002-2333-1. [DOI] [PubMed] [Google Scholar]
- 6.Bernardi G. Isochores and the Evolutionary Genomics of Vertebrates. Gene. 2000;241:3–17. doi: 10.1016/S0378-1119(99)00485-0. [DOI] [PubMed] [Google Scholar]
- 7.Sankoff D. Rearrangements and Chromosomal Evolution. Curr. Opin. Genet. Dev. 2003;13:583–587. doi: 10.1016/j.gde.2003.10.006. [DOI] [PubMed] [Google Scholar]
- 8.Sankoff D., Nadeau J.H. Chromosome Rearrangements in Evolution: From Gene Order to Genome Sequence and Back. Proc. Natl. Acad. Sci. U.S.A. 2003;100:11188–11189. doi: 10.1073/pnas.2035002100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Stuart G.W., Moffett K., Leader J.J. A Comprehensive Vertebrate Phylogeny Using Vector Representations of Protein Sequences from Whole Genomes. Mol. Biol. Evol. 2002;19:554–562. doi: 10.1093/oxfordjournals.molbev.a004111. [DOI] [PubMed] [Google Scholar]
- 10.Lin J., Gerstein M. Whole-Genome Trees Based on the Occurrence of Folds and Orthologs: Implications for Comparing Genomes on Different Levels. Genome Res. 2000;10:808–818. doi: 10.1101/gr.10.6.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Ling L., Wang J., Cui Y., Hi W., Chen R. Proteome-Wide Analysis of Protein Function Composition Reveals the Clustering and Phylogenetic Properties of Organisms. Mol. Phylogenet. Evol. 2002;25:101–111. doi: 10.1016/s1055-7903(02)00354-8. [DOI] [PubMed] [Google Scholar]
- 12.Fang W. The Disagreement Degree of Multi-Person Judgments in Additive Structure. Math. Soc. Sci. 1994;25:85–111. [Google Scholar]
- 13.Fang W. On a Global Optimization Problem in the Study of Information Discrepancy. J. Global Optim. 1997;11:387–408. [Google Scholar]
- 14.Tatusov R.L., Koonin E.V., Lipman D.J. A Genomic Perspective on Protein Families. Science. 1997;278:631–637. doi: 10.1126/science.278.5338.631. [DOI] [PubMed] [Google Scholar]
- 15.Pearson W.R., Lipman D.J. Improved Tools for Biological Sequence Comparison. Proc. Natl. Acad. Sci. U.S.A. 1988;85:2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Hogenesch J.B., Ching K.A., Batalov S., Su A.I., Walker J.R., Zhou Y. A Comparison of the Celera and Ensembl Predicted Gene Sets Reveals Little Overlap in Novel Genes. Cell. 2001;106:413–415. doi: 10.1016/s0092-8674(01)00467-6. [DOI] [PubMed] [Google Scholar]
- 17.Gatesy J., Desalle R., Wheeler W. Alignment-Ambiguous Nucleotide Sites and the Exclusion of Systematic Data. Mol. Phylogenet. Evol. 1993;2:152–157. doi: 10.1006/mpev.1993.1015. [DOI] [PubMed] [Google Scholar]
- 18.Wheeler W.C., Gatesy J., Desalle R. Elision: A Method for Accommodating Multiple Molecular Sequence Alignments with Alignment-Ambiguous Sites. Mol. Phylogenet. Evol. 1995;4:1–9. doi: 10.1006/mpev.1995.1001. [DOI] [PubMed] [Google Scholar]
- 19.Fischer G., James S.A., Roberts I.N., Oliver S.G., Louis E.J. Chromosomal Evolution in Saccharomyces. Nature. 2000;405:451–454. doi: 10.1038/35013058. [DOI] [PubMed] [Google Scholar]
- 20.Ejima Y., Yang L. Trans Mobilization of Genomic DNA as a Mechanism for Retrotransposon-Mediated Exon Shuffling. Hum. Mol. Genet. 2003;12:1321–1328. doi: 10.1093/hmg/ddg138. [DOI] [PubMed] [Google Scholar]
- 21.Zdobnov E.M., von Mering C., Letunic I., Torrents D., Suyama M., Copley R.R. Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster. Science. 2002;298:149–159. doi: 10.1126/science.1077061. [DOI] [PubMed] [Google Scholar]
- 22.Gilbert W. Why Genes in Pieces? Nature. 1978;271:501. doi: 10.1038/271501a0. [DOI] [PubMed] [Google Scholar]
- 23.Bowers J.E., Chapman B.A., Rong J., Paterson A.H. Unravelling Angiosperm Genome Evolution by Phylogenetic Analysis of Chromosomal Duplication Events. Nature. 2003;422:433–438. doi: 10.1038/nature01521. [DOI] [PubMed] [Google Scholar]
- 24.Wolfe K.H., Shields D.C. Molecular Evidence for an Ancient Duplication of the Entire Yeast Genome. Nature. 1997;387:708–713. doi: 10.1038/42711. [DOI] [PubMed] [Google Scholar]
- 25.Garcia-Vallve S., Romeu A., Palau J. Horizontal Gene Transfer in Bacterial and Archaeal Complete Genomes. Genome Res. 2000;10:1719–1725. doi: 10.1101/gr.130000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Kumar S., Subramanian S. Mutation Rates in Mammalian Genomes. Proc. Natl. Acad. Sci._U.S.A. 2002;99:803–808. doi: 10.1073/pnas.022629899. [DOI] [PMC free article] [PubMed] [Google Scholar]