Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2005 Dec;31(3-4):417–432. doi: 10.1007/s10867-005-0173-0

A Spectroscopic Study of Structural Heterogeneity and Carbon Monoxide Binding in Neuroglobin

Karin Nienhaus 1, G Ulrich Nienhaus 1,2,
PMCID: PMC3456330  PMID: 23345908

Abstract

Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.

Key words: FTIR spectroscopy, ligand binding, neuroglobin, temperature derivative spectroscopy

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

References

  1. Stryer, L.: Biochemistry, 4th ed., Freeman, San Francisco, 1995.
  2. Nienhaus G.U., Young R.D. Protein dynamics. New York: VCH; 1996. [Google Scholar]
  3. Frauenfelder H., Sligar S.G., Wolynes P.G.The Energy Landscapes and Motions of Proteins Science 19912541598–1603.1991Sci...254.1598F [DOI] [PubMed] [Google Scholar]
  4. Ansari A., Berendzen J., Bowne S.F., Frauenfelder H., Iben I.E., Sauke T.B., Shyamsunder E., Young R.D.Protein States and Proteinquakes Proc. Natl. Acad. Sci. U.S.A. 1985825000–5004.1985PNAS...82.5000A [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ansari A., Berendzen J., Braunstein D., Cowen B.R., Frauenfelder H., Hong M.K., Iben I.E., Johnson J.B., Ormos P., Sauke T.B., et al. Rebinding and Relaxation in the Myoglobin Pocket. Biophys. Chem. 1987;26:337–355. doi: 10.1016/0301-4622(87)80034-0. [DOI] [PubMed] [Google Scholar]
  6. Andrews B.K., Romo T., Clarage J.B., Pettitt B.M., Phillips G.N., Jr. Characterizing Global Substates of Myoglobin. Structure. 1998;6:587–594. doi: 10.1016/S0969-2126(98)00060-4. [DOI] [PubMed] [Google Scholar]
  7. Garcia A.E., Blumenfeld R., Hummer G., Krumhansl J.A.Multi-Basin Dynamics of a Protein in a Crystal Environment Physica D 1997107225–239.1997PhyD..107..225G [Google Scholar]
  8. Becker O.M., Karplus M.The Topology of Multidimensional Potential Energy Surfaces: Theory and Application to Peptide Structure and Kinetics J. Chem. Phys. 19971061495–1517. 10.1063/1.4732991997JChPh.106.1495B [DOI] [Google Scholar]
  9. McMahon B.H., Müller J.D., Wraight C.A., Nienhaus G.U. Electron Transfer and Protein Dynamics in the Photosynthetic Reaction Center. Biophys. J. 1998;74:2567–2587. doi: 10.1016/S0006-3495(98)77964-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thorn L.D., Wiersma D.A.Real Time Observation of Low-Temperature Protein Motions Phys. Rev. Lett. 1995742138–2141.1995PhRvL..74.2138T [DOI] [PubMed] [Google Scholar]
  11. Hofmann C., Aartsma T.J., Michel H., Kohler J.Direct Observation of Tiers in the Energy Landscape of a Chromoprotein: A Single-Molecule Study Proc. Natl. Acad. Sci. U.S.A. 200310015534–15538. 10.1073/pnas.25338961002003PNAS..10015534H [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Braunstein D.P., Chu K., Egeberg K.D., Frauenfelder H., Mourant J.R., Nienhaus G.U., Ormos P., Sligar S.G., Springer B.A., Young R.D. Ligand Binding to Heme Proteins: III. FTIR Studies of His-E7 and Val-E11 Mutants of Carbonmonoxymyoglobin. Biophys. J. 1993;65:2447–2454. doi: 10.1016/S0006-3495(93)81310-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li T., Quillin M.L., Phillips G.N., Jr., Olson J.S. Structural Determinants of the Stretching Frequency of CO Bound to Myoglobin. Biochemistry. 1994;33:1433–1446. doi: 10.1021/bi00172a021. [DOI] [PubMed] [Google Scholar]
  14. Vojtechovsky J., Chu K., Berendzen J., Sweet R.M., Schlichting I. Crystal Structures of Myoglobin-Ligand Complexes at Near-Atomic Resolution. Biophys. J. 1999;77:2153–2174. doi: 10.1016/S0006-3495(99)77056-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson J.B., Lamb D.C., Frauenfelder H., Müller J.D., McMahon B., Nienhaus G.U., Young R.D. Ligand Binding to Heme Proteins. VI. Interconversion of Taxonomic Substates in Carbonmonoxymyoglobin. Biophys. J. 1996;71:1563–1573. doi: 10.1016/S0006-3495(96)79359-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Müller J.D., McMahon B.H., Chien E.Y., Sligar S.G., Nienhaus G.U. Connection between the Taxonomic Substates and Protonation of Histidines 64 and 97 in Carbonmonoxy Myoglobin. Biophys. J. 1999;77:1036–1051. doi: 10.1016/s0006-3495(99)76954-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kriegl J.M., Nienhaus K., Deng P., Fuchs J., Nienhaus G.U.Ligand Dynamics in a Protein Internal Cavity Proc. Natl. Acad. Sci. U.S.A. 20031007069–7074. 10.1073/pnas.12318561002003PNAS..100.7069K [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Alben J.O., Beece D., Bowne S.F., Doster W., Eisenstein L., Frauenfelder H., Good D., McDonald J.D., Marden M.C., Moh P.P., Reinisch L., Reynolds A.H., Shyamsunder E., Yue K.T.Infrared Spectroscopy of Photodissociated Carboxymyoglobin at Low Temperatures Proc. Natl. Acad. Sci. U.S.A. 1982793744–3748.1982PNAS...79.3744A [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nienhaus K., Deng P., Kriegl J.M., Nienhaus G.U. Structural Dynamics of Myoglobin: The Effect of Internal Cavities on Ligand Migration and Binding. Biochemistry. 2003;42:9647–9658. doi: 10.1021/bi034788k. [DOI] [PubMed] [Google Scholar]
  20. Nienhaus K., Deng P., Kriegl J.M., Nienhaus G.U. Structural Dynamics of Myoglobin: Spectroscopic and Structural Characterization of Ligand Docking Sites in Myoglobin Mutant L29W. Biochemistry. 2003;42:9633–9646. doi: 10.1021/bi034787s. [DOI] [PubMed] [Google Scholar]
  21. Nienhaus K., Deng P., Olson J.S., Warren J.J., Nienhaus G.U. Structural Dynamics of Myoglobin: Ligand Migration and Binding in Valine 68 Mutants. J. Biol. Chem. 2003;278:42532–42544. doi: 10.1074/jbc.M306888200. [DOI] [PubMed] [Google Scholar]
  22. Nienhaus G.U., Mourant J.R., Chu K., Frauenfelder H. Ligand Binding to Heme Proteins: The Effect of Light on Ligand Binding in Myoglobin. Biochemistry. 1994;33:13413–13430. doi: 10.1021/bi00249a030. [DOI] [PubMed] [Google Scholar]
  23. Ostermann A., Waschipky R., Parak F.G., Nienhaus G.U.Ligand Binding and Conformational Motions in Myoglobin Nature 2000404205–208.2000Natur.404..205O [DOI] [PubMed] [Google Scholar]
  24. Lim M., Jackson T.A., Anfinrud P.A.Mid-Infrared Vibrational Spectrum of CO after Photodissociation from Heme: Evidence for a Ligand Docking Site in the Heme Pocket of Hemoglobin and Myoglobin J. Chem. Phys. 19951024355–4366.1995JChPh.102.4355L [Google Scholar]
  25. Lim M., Jackson T.A., Anfinrud P.A. Ultrafast Rotation and Trapping of Carbon Monoxide Dissociated from Myoglobin. Nat. Struct. Biol. 1997;4:209–214. doi: 10.1038/nsb0397-209. [DOI] [PubMed] [Google Scholar]
  26. Tilton R.F., Jr., Kuntz I.D., Jr., Petsko G.A. Cavities in proteins: Structure of a Metmyoglobin-Xenon Complex Solved to 1.9 Å. Biochemistry. 1984;23:2849–2857. doi: 10.1021/bi00308a002. [DOI] [PubMed] [Google Scholar]
  27. Burmester T., Weich B., Reinhardt S., Hankeln T.A Vertebrate Globin Expressed in the Brain Nature 2000407520–523. 10.1038/350350932000Natur.407..520B [DOI] [PubMed] [Google Scholar]
  28. Venis S. Neuroglobin might Protect Brain Cells During Stroke. Lancet. 2001;358:2055. doi: 10.1016/S0140-6736(01)07148-3. [DOI] [PubMed] [Google Scholar]
  29. Sun Y., Jin K., Mao X.O., Zhu Y., Greenberg D.A.Neuroglobin is Up-Regulated by and Protects Neurons from Hypoxic-Ischemic Injury Proc. Natl. Acad. Sci. U.S.A. 20019815306–15311.2001PNAS...9815306S [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sun Y., Jin K., Peel A., Mao X.O., Xie L., Greenberg D.A.Neuroglobin Protects the Brain from Experimental Stroke in vivo Proc. Natl. Acad. Sci. U.S.A. 20031003497–3500.2003PNAS..100.3497S [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wakasugi K., Nakano T., Morishima I. Oxidized Human Neuroglobin Acts as a Heterotrimeric Galpha Protein Guanine Nucleotide Dissociation Inhibitor. J. Biol. Chem. 2003;278:36505–36512. doi: 10.1074/jbc.M305519200. [DOI] [PubMed] [Google Scholar]
  32. Vallone, B., Nienhaus, K., Matthes, A., Brunori, M. and Nienhaus, G.U.: The Structure of Carbonmonoxy Neuroglobin Reveals a Heme-Sliding Mechanism for Control of Ligand Affinity, Proc. Natl. Acad. Sci. U.S.A., in press. [DOI] [PMC free article] [PubMed]
  33. Kriegl J.M., Bhattacharyya A.J., Nienhaus K., Deng P., Minkow O., Nienhaus G.U.Ligand Binding and Protein Dynamics in Neuroglobin Proc. Natl. Acad. Sci. U.S.A. 2002997992–7997. 10.1073/pnas.0822443992002PNAS...99.7992K [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pesce A., Dewilde S., Nardini M., Moens L., Ascenzi P., Hankeln T., Burmester T., Bolognesi M. Human Brain Neuroglobin Structure Reveals a Distinct Mode of Controlling Oxygen Affinity. Structure (Camb.) 2003;11:1087–1095. doi: 10.1016/S0969-2126(03)00166-7. [DOI] [PubMed] [Google Scholar]
  35. Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. The Structure of Murine Neuroglobin: Novel Pathways for Ligand Migration and Binding. Proteins. 2004;56:85–92. doi: 10.1002/prot.20113. [DOI] [PubMed] [Google Scholar]
  36. Nienhaus K., Kriegl J.M., Nienhaus G.U. Structural Dynamics in the Active Site of Murine Neuroglobin and Its Effects on Ligand Binding. J. Biol. Chem. 2004;279:22944–22952. doi: 10.1074/jbc.M401561200. [DOI] [PubMed] [Google Scholar]
  37. Dewilde S., Kiger L., Burmester T., Hankeln T., Baudin-Creuza V., Aerts T., Marden M.C., Caubergs R., Moens L. Biochemical Characterization and Ligand Binding Properties of Neuroglobin, a Novel Member of the Globin Family. J. Biol. Chem. 2001;276:38949–38955. doi: 10.1074/jbc.M106438200. [DOI] [PubMed] [Google Scholar]
  38. Trent J.T., Watts R.A., Hargrove M.S. Human Neuroglobin, a Hexacoordinate Hemoglobin that Reversibly Binds Oxygen. J. Biol. Chem. 2001;276:30106–30110. doi: 10.1074/jbc.C100300200. [DOI] [PubMed] [Google Scholar]
  39. Uno T., Ryu D., Tsutsumi H., Tomisugi Y., Ishikawa Y., Wilkinson A.J., Sato H., Hayashi T. Residues in the Distal Heme Pocket of Neuroglobin: Implications for the Multiple Ligand Binding Steps. J. Biol. Chem. 2003;279:5886–5893. doi: 10.1074/jbc.M311748200. [DOI] [PubMed] [Google Scholar]
  40. Lamb D.C., Nienhaus K., Arcovito A., Draghi F., Miele A.E., Brunori M., Nienhaus G.U. Structural Dynamics of Myoglobin: Ligand Migration Among Protein Cavities Studied by Fourier Transform Infrared/Temperature Derivative Spectroscopy. J. Biol. Chem. 2002;277:11636–11644. doi: 10.1074/jbc.M109892200. [DOI] [PubMed] [Google Scholar]
  41. Nienhaus G.U., Nienhaus K. Infrared Study of Carbon Monoxide Migration among Internal Cavities of Myoglobin Mutant L29W. J. Biol. Phys. 2002;28:163–172. doi: 10.1023/A:1019990522433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Berendzen J., Braunstein D.Temperature-Derivative Spectroscopy: A Tool for Protein Dynamics Proc. Natl. Acad. Sci. U.S.A. 1990871–5.1990PNAS...87....1B [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mourant J.R., Braunstein D.P., Chu K., Frauenfelder H., Nienhaus G.U., Ormos P., Young R.D. Ligand Binding to Heme Proteins: II. Transitions in the Heme Pocket of Myoglobin. Biophys. J. 1993;65:1496–1507. doi: 10.1016/S0006-3495(93)81218-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Young R.D., Bowne S.F.Conformational Substates and Barrier Height Distributions in Ligand Binding to Heme Proteins J. Chem. Phys. 1984813730–3737.1984JChPh..81.3730Y [Google Scholar]
  45. Lamb D.C., Kriegl J., Kastens K., Nienhaus G.U. Quantum-Mechanical Tunneling of Water in Heme Proteins. J. Phys. Org. Chem. 2000;13:1–5. [Google Scholar]
  46. Alben J.O., Beece D., Bowne S.F., Eisenstein L., Frauenfelder H., Good D., Marden M., Moh P.P., Reinisch L., Reynolds A.H., Yue K.T.Isotope Effect in Molecular Tunneling Phys. Rev. Lett. 1980441157–1160. 10.1103/PhysRevLett.44.11571980PhRvL..44.1157A [DOI] [Google Scholar]
  47. Steinbach P.J., Chu K., Frauenfelder H., Johnson J.B., Lamb D.C., Nienhaus G.U., Sauke T.B., Young R.D. Determination of Rate Distributions from Kinetic Experiments. Biophys. J. 1992;61:235–245. doi: 10.1016/S0006-3495(92)81830-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Steinbach P.J., Ansari A., Berendzen J., Braunstein D., Chu K., Cowen B.R., Ehrenstein D., Frauenfelder H., Johnson J.B., Lamb D.C., Luck S., Mourant J.R., Nienhaus G.U., Ormos P., Philipp R., Xie A., Young R.D. Ligand Binding to Heme Proteins: Connection Between Dynamics and Function. Biochemistry. 1991;30:3988–4001. doi: 10.1021/bi00230a026. [DOI] [PubMed] [Google Scholar]
  49. Austin R.H., Beeson K.W., Eisenstein L., Frauenfelder H., Gunsalus I.C. Dynamics of Ligand Binding to Myoglobin. Biochemistry. 1975;14:5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  50. Ormos P., Szaraz S., Cupane A., Nienhaus G.U.Structural Factors Controlling Ligand Binding to Myoglobin: A Kinetic Hole-Burning Study Proc. Natl. Acad. Sci. U.S.A. 1998956762–6767. 10.1073/pnas.95.12.67621998PNAS...95.6762O [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Phillips G.N., Jr., Teodoro M.L., Li T., Smith B., Olson J.S. Bound CO is a Molecular Probe of Electrostatic Potential in the Distal Pocket of Myoglobin. J. Phys. Chem. B. 1999;103:8817–8829. doi: 10.1021/jp9918205. [DOI] [Google Scholar]
  52. Nienhaus K., Olson J.S., Franzen S., Nienhaus G.U. The Origin of Stark Splitting in the Initial Photoproduct State of MbCO. J. Am. Chem. Soc. 2005;127:40–41. doi: 10.1021/ja0466917. [DOI] [PubMed] [Google Scholar]
  53. Yang F., Phillips G.N., Jr. Crystal Structures of CO-, Deoxy- and Met-Myoglobins at Various pH Values. J. Mol. Biol. 1996;256:762–774. doi: 10.1006/jmbi.1996.0123. [DOI] [PubMed] [Google Scholar]
  54. Alben J.O., Caughey W.S. An Infrared Study of Bound Carbon Monoxide in the Human Red Blood Cell, Isolated Hemoglobin, and Heme Carbonyls. Biochemistry. 1968;7:175–183. doi: 10.1021/bi00841a022. [DOI] [PubMed] [Google Scholar]
  55. Ray G.B., Li X.-Y., Ibers J.A., Sessler J.L., Spiro G.S. How Far can Proteins Bend the FeCO Unit. J. Am. Chem. Soc. 1994;116:162–176. doi: 10.1021/ja00080a019. [DOI] [Google Scholar]
  56. Couture M., Burmester T., Hankeln T., Rousseau D.L. The Heme Environment of Mouse Neuroglobin. Evidence for the Presence of two Conformations of the Heme Pocket. J. Biol. Chem. 2001;276:36377–36382. doi: 10.1074/jbc.M103907200. [DOI] [PubMed] [Google Scholar]
  57. Bhattacharya S., Sukits S.F., MacLaughlin K.L., Lecomte J.T. The Tautomeric State of Histidines in Myoglobin. Biophys. J. 1997;73:3230–3240. doi: 10.1016/S0006-3495(97)78348-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yeh S.R., Couture M., Ouellet Y., Guertin M., Rousseau D.L. A Cooperative Oxygen Binding Hemoglobin from Mycobacterium Tuberculosis. Stabilization of Heme Ligands by a Distal Tyrosine Residue. J. Biol. Chem. 2000;275:1679–1684. doi: 10.1074/jbc.275.3.1679. [DOI] [PubMed] [Google Scholar]
  59. Schlichting I., Berendzen J., Phillips G.N., Jr., Sweet R.M.Crystal Structure of Photolysed Carbonmonoxy-Myoglobin Nature 1994371808–812. 10.1038/371808a01994Natur.371..808S [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES