Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Feb;61(2):251–259. doi: 10.1172/JCI108934

Electron Spin Resonance Studies of Erythrocytes from Patients with Duchenne Muscular Dystrophy

Bunzo Sato 1,2,3, Koichi Nishikida 1,2,3, Leo T Samuels 1,2,3, Frank H Tyler 1,2,3
PMCID: PMC372534  PMID: 23391

Abstract

The membrane organization of the erythrocytes from patients with Duchenne muscular dystrophy was studied by means of electron spin resonance. The fluidity of the membrane near the polar region of Duchenne muscular dystrophy erythrocytes was similar to that of normal erythrocytes. The membrane environment in the nonpolar region, however, was quite different from that of normal erythrocytes, judged by the spectra with 2-(14-carboxytetradecyl) - 2 - ethyl - 4,4 - dimethyl - 3 - oxazolidinyloxyl as probe. The temperature dependence of the ratio of the line height of central field to that at the low field showed two inflection points in normal erythrocytes at pH 7.4 (13.5°-16.5° and 37.5°-40.5°C, respectively) but the inflection point in the lower temperature range was not detected in Duchenne muscular dystrophy erythrocytes. When pH was varied, an abrupt decrease in the ratio was observed at pH 5.9-5.6 in normal erythrocytes whereas there was a gradual decrease over the range of pH from 6.6 to 5.0 in Duchenne muscular dystrophy erythrocytes.

The rate of reduction of the radical 2-(3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinyloxyl by ascorbate in normal erythrocytes was faster than that in Duchenne muscular dystrophy erythrocytes. Treatment of both erythrocytes with phloretin markedly reduced the rate of reduction by ascorbate and eliminated the difference in the two types of erythrocyte. These results indicate that in Duchenne muscular dystrophy the erythrocyte membrane is involved as well as the muscle cell.

Full text

PDF
251

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bieri V. G., Wallach D. F. Lipid-protein relationships in erythrocyte membranes revealed by paramagnetic quenching of protein fluorescence. Biochim Biophys Acta. 1976 Aug 16;443(2):198–205. doi: 10.1016/0005-2736(76)90503-4. [DOI] [PubMed] [Google Scholar]
  2. Butterfield D. A., Chesnut D. B., Appel S. H., Roses A. D. Spin label study of erythrocyte membrane fluidity in myotonic and Duchenne muscular dystrophy and congenital myotonia. Nature. 1976 Sep 9;263(5573):159–161. doi: 10.1038/263159a0. [DOI] [PubMed] [Google Scholar]
  3. Butterfield D. A., Chesnut D. B., Roses A. D., Appel S. H. Electron spin resonance studies of erythrocytes from patients with myotonic muscular dystrophy. Proc Natl Acad Sci U S A. 1974 Mar;71(3):909–913. doi: 10.1073/pnas.71.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butterfield D. A., Roses A. D., Appel S. H., Chesnut D. B. Electron spin resonance studies of membrane proteins in erythrocytes in myotonic muscular dystrophy. Arch Biochem Biophys. 1976 Nov;177(1):226–234. doi: 10.1016/0003-9861(76)90432-x. [DOI] [PubMed] [Google Scholar]
  5. Butterfield D. A., Roses A. D., Cooper M. L., Appel S. H., Chesnut D. B. A comparative electron spin resonance study of the erythrocyte membrane in myotonic muscular dystrophy. Biochemistry. 1974 Dec 3;13(25):5078–5082. doi: 10.1021/bi00722a003. [DOI] [PubMed] [Google Scholar]
  6. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  7. Hubbell W. L., McConnell H. M. Motion of steroid spin labels in membranes. Proc Natl Acad Sci U S A. 1969 May;63(1):16–22. doi: 10.1073/pnas.63.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hubbell W. L., McConnell H. M. Orientation and motion of amphiphilic spin labels in membranes. Proc Natl Acad Sci U S A. 1969 Sep;64(1):20–27. doi: 10.1073/pnas.64.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iot T., Ohnish S., Ishinaga M., Kito M. Synthesis of a new phosphatidylserine spin-label and calcium-induced lateral phase separation in phosphatidylserine-phosphatidylcholine membranes. Biochemistry. 1975 Jul 15;14(14):3064–3069. doi: 10.1021/bi00685a004. [DOI] [PubMed] [Google Scholar]
  10. Ito T., Onishi S. Ca2+-induced lateral phase separations in phosphatidic acid-phosphatidylcholine membranes. Biochim Biophys Acta. 1974 May 30;352(1):29–37. doi: 10.1016/0005-2736(74)90176-x. [DOI] [PubMed] [Google Scholar]
  11. Jost P. C., Griffith O. H., Capaldi R. A., Vanderkooi G. Evidence for boundary lipid in membranes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):480–484. doi: 10.1073/pnas.70.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaplan J., Canonico P. G., Caspary W. J. Electron spin resonance studies of spin-labeled mammalian cells by detection of surface-membrane signals. Proc Natl Acad Sci U S A. 1973 Jan;70(1):66–70. doi: 10.1073/pnas.70.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kunze D., Reichmann G., Egger E., Leuschner G., Eckhardt H. Erythrozytenlipide bei Progressiver Muskeldystrophie. Clin Chim Acta. 1973 Feb 12;43(3):333–341. doi: 10.1016/0009-8981(73)90471-3. [DOI] [PubMed] [Google Scholar]
  14. Matheson D. W., Howland J. L. Erythrocyte deformation in human muscular dystrophy. Science. 1974 Apr 12;184(4133):165–166. doi: 10.1126/science.184.4133.165. [DOI] [PubMed] [Google Scholar]
  15. Miale T. D., Frias J. L., Lawson D. L. Erythrocytes in human muscular dystrophy. Science. 1975 Feb 7;187(4175):453–454. doi: 10.1126/science.1111115. [DOI] [PubMed] [Google Scholar]
  16. Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Percy A. K., Miller M. E. Reduced deformability of erythrocyte membranes from patients with Duchenne muscular dystrophy. Nature. 1975 Nov 13;258(5531):147–148. doi: 10.1038/258147a0. [DOI] [PubMed] [Google Scholar]
  18. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Probstfield J. L., Wang Y., From A. H. Cation transport in Duchenne muscular dystrophy erythrocytes. Proc Soc Exp Biol Med. 1972 Nov;141(2):479–481. doi: 10.3181/00379727-141-36802. [DOI] [PubMed] [Google Scholar]
  20. Roses A. D., Appel S. H., Butterfield D. A., Miller S. E., Chesnut D. B. Specificity of biochemical and biophysical tests in Duchenne and myotonic muscular dystrophy, carrier states, and congenital myotonia. Trans Am Neurol Assoc. 1975;100:131–134. [PubMed] [Google Scholar]
  21. Roses A. D., Herbstreith M. H., Appel S. H. Membrane protein kinase alteration in Duchenne muscular dystrophy. Nature. 1975 Mar 27;254(5498):350–351. doi: 10.1038/254350a0. [DOI] [PubMed] [Google Scholar]
  22. Roses A. D., Roses M. J., Miller S. E., Hull K. L., Jr, Appel S. H. Carrier detection in Duchenne muscular dystrophy. N Engl J Med. 1976 Jan 22;294(4):193–198. doi: 10.1056/NEJM197601222940404. [DOI] [PubMed] [Google Scholar]
  23. Sackmann E., Träuble H., Galla H. J., Overath P. Lateral diffusion, protein mobility, and phase transitions in Escherichia coli membranes. A spin label study. Biochemistry. 1973 Dec 18;12(26):5360–5369. doi: 10.1021/bi00750a020. [DOI] [PubMed] [Google Scholar]
  24. Sackmann E., Träuble H. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. II. Analysis of electron spin resonance spectra of steroid labels incorporated into lipid membranes. J Am Chem Soc. 1972 Jun 28;94(13):4492–4498. doi: 10.1021/ja00768a014. [DOI] [PubMed] [Google Scholar]
  25. Schatzmann H. J., Rossi G. L. (Ca 2+ + Mg 2+ )-activated membrane ATPases in human red cells and their possible relations to cation transport. Biochim Biophys Acta. 1971 Aug 13;241(2):379–392. doi: 10.1016/0005-2736(71)90037-x. [DOI] [PubMed] [Google Scholar]
  26. Stone T. J., Buckman T., Nordio P. L., McConnell H. M. Spin-labeled biomolecules. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1010–1017. doi: 10.1073/pnas.54.4.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Triplett R. B., Wingate J. M., Carraway K. L. Calcium effects on erythrocyte membrane proteins. Biochem Biophys Res Commun. 1972 Nov 15;49(4):1014–1020. doi: 10.1016/0006-291x(72)90313-0. [DOI] [PubMed] [Google Scholar]
  28. Wallach D. F., Verma S. P., Weidekamm E., Bieri V. Hydrophobic binding sites in bovine serum albumin and erythrocyte ghost proteins. Study by spin-labelling, paramagnetic fluorescence quenching and chemical modification. Biochim Biophys Acta. 1974 Jul 12;356(1):68–81. doi: 10.1016/0005-2736(74)90294-6. [DOI] [PubMed] [Google Scholar]
  29. Wolf H. U. Studies on a Ca 2+ -dependent ATPase of human erythrocyte membranes. Effects of Ca 2+ and H + . Biochim Biophys Acta. 1972 May 9;266(2):361–375. doi: 10.1016/0005-2736(72)90094-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES