Abstract
The effects of selenomethionine (SeMet) on the growth of 17 cultured cell lines were studied. SeMet in the culture medium of three hepatoma cell lines promoted cell growth at subcytotoxic levels (1-20 microM), but the growth of malignant lymphoid and myeloid cells was not stimulated. L-SeMet was cytotoxic to all 17 cell lines when assayed after culture for 3-10 days. A 50% growth inhibition was observed by 30-160 microM-SeMet in a culture medium containing 100 microM-methionine. SeMet cytotoxicity to normal (fibroblasts) and malignant cells was rather similar, excluding specific antineoplastic cytotoxicity. Cytotoxicity was increased by decreasing concentrations of methionine. The DL form of SeMet was less cytotoxic than the L form. L-SeMet was metabolized to a selenium analogue of S-adenosylmethionine approximately as effectively as the natural sulphur analogue methionine in malignant R1.1 lymphoblasts. Concomitantly, S-adenosylmethionine pools were decreased. This occurred early and at cytotoxic SeMet levels. Methionine adenosyltransferase activity was not altered by SeMet treatment. ATP pools were not affected early, and decreases in the synthesis of DNA and protein took place late and were apparently related to cell death. RNA synthesis was slightly stimulated at low cytotoxic SeMet levels by 24 h, but was markedly inhibited after 48 h. The SeMet analogue of S-adenosylmethionine could be effectively utilized in a specific enzymic transmethylation. Neither S-adenosylhomocysteine nor its selenium analogue accumulated in the treated cells. These findings together suggest a direct or indirect involvement of S-adenosylmethionine metabolism in SeMet cytotoxicity, but exclude a gross blockage of transmethylations.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batist G., Katki A. G., Klecker R. W., Jr, Myers C. E. Selenium-induced cytotoxicity of human leukemia cells: interaction with reduced glutathione. Cancer Res. 1986 Nov;46(11):5482–5485. [PubMed] [Google Scholar]
- Beilstein M. A., Whanger P. D. Metabolism of selenomethionine and effects of interacting compounds by mammalian cells in culture. J Inorg Biochem. 1987 Feb;29(2):137–152. doi: 10.1016/0162-0134(87)80021-1. [DOI] [PubMed] [Google Scholar]
- Eloranta T. O., Kajander E. O. Catabolism and lability of S-adenosyl-L-methionine in rat liver extracts. Biochem J. 1984 Nov 15;224(1):137–144. doi: 10.1042/bj2240137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esaki N., Nakamura T., Tanaka H., Suzuki T., Morino Y., Soda K. Enzymatic synthesis of selenocysteine in rat liver. Biochemistry. 1981 Jul 21;20(15):4492–4496. doi: 10.1021/bi00518a039. [DOI] [PubMed] [Google Scholar]
- Fico M. E., Poirier K. A., Watrach A. M., Watrach M. A., Milner J. A. Differential effects of selenium on normal and neoplastic canine mammary cells. Cancer Res. 1986 Jul;46(7):3384–3388. [PubMed] [Google Scholar]
- Forstrom J. W., Zakowski J. J., Tappel A. L. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry. 1978 Jun 27;17(13):2639–2644. doi: 10.1021/bi00606a028. [DOI] [PubMed] [Google Scholar]
- Foster S. J., Kraus R. J., Ganther H. E. The metabolism of selenomethionine, Se-methylselenocysteine, their selenonium derivatives, and trimethylselenonium in the rat. Arch Biochem Biophys. 1986 Nov 15;251(1):77–86. doi: 10.1016/0003-9861(86)90053-6. [DOI] [PubMed] [Google Scholar]
- German D. C., Bloch C. A., Kredich N. M. Measurements of S-adenosylmethionine and L-homocysteine metabolism in cultured human lymphoid cells. J Biol Chem. 1983 Sep 25;258(18):10997–11003. [PubMed] [Google Scholar]
- Hankinson O. Single-step selection of clones of a mouse hepatoma line deficient in aryl hydrocarbon hydroxylase. Proc Natl Acad Sci U S A. 1979 Jan;76(1):373–376. doi: 10.1073/pnas.76.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvima R. J., Kajander E. O., Harvima I. T., Fraki J. E. Purification and partial characterization of rat kidney histamine-N-methyltransferase. Biochim Biophys Acta. 1985 Jul 26;841(1):42–49. doi: 10.1016/0304-4165(85)90272-7. [DOI] [PubMed] [Google Scholar]
- Hoffman J. L. Selenite toxicity, depletion of liver S-adenosylmethionine, and inactivation of methionine adenosyltransferase. Arch Biochem Biophys. 1977 Feb;179(1):136–140. doi: 10.1016/0003-9861(77)90096-0. [DOI] [PubMed] [Google Scholar]
- Iizasa T., Carson D. A. Differential regulation of polyamine synthesis and transmethylation reactions in methylthioadenosine phosphorylase deficient mammalian cells. Biochim Biophys Acta. 1985 Mar 21;844(3):280–287. doi: 10.1016/0167-4889(85)90128-4. [DOI] [PubMed] [Google Scholar]
- Kajander E. O., Kubota M., Carrera C. J., Montgomery J. A., Carson D. A. Resistance to multiple adenine nucleoside and methionine analogues in mutant murine lymphoma cells with enlarged S-adenosylmethionine pools. Cancer Res. 1986 Jun;46(6):2866–2870. [PubMed] [Google Scholar]
- Kajander E. O., Pajula R. L., Harvima R. J., Eloranta T. O. Synthesis and analysis of selenomethionine metabolites. Anal Biochem. 1989 Jun;179(2):396–400. doi: 10.1016/0003-2697(89)90151-6. [DOI] [PubMed] [Google Scholar]
- Kantola M., Saaranen M., Vanha-Perttula T. Selenium and glutathione peroxidase in seminal plasma of men and bulls. J Reprod Fertil. 1988 Jul;83(2):785–794. doi: 10.1530/jrf.0.0830785. [DOI] [PubMed] [Google Scholar]
- Korhola M., Vainio A., Edelmann K. Selenium yeast. Ann Clin Res. 1986;18(1):65–68. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levander O. A. A global view of human selenium nutrition. Annu Rev Nutr. 1987;7:227–250. doi: 10.1146/annurev.nu.07.070187.001303. [DOI] [PubMed] [Google Scholar]
- MUDD S. H., CANTONI G. L. Selenomethionine in enzymatic transmethylations. Nature. 1957 Nov 16;180(4594):1052–1052. doi: 10.1038/1801052a0. [DOI] [PubMed] [Google Scholar]
- Milner J. A., Pigott M. A., Dipple A. Selective effects of selenium selenite on 7,12-dimethylbenz(a)anthracene-DNA binding in fetal mouse cell cultures. Cancer Res. 1985 Dec;45(12 Pt 1):6347–6354. [PubMed] [Google Scholar]
- Porter C. W., Sufrin J. R., Keith D. D. Growth inhibition by methionine analog inhibitors of S-adenosylmethionine biosynthesis in the absence of polyamine depletion. Biochem Biophys Res Commun. 1984 Jul 18;122(1):350–357. doi: 10.1016/0006-291x(84)90482-0. [DOI] [PubMed] [Google Scholar]
- Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973 Feb 9;179(4073):588–590. doi: 10.1126/science.179.4073.588. [DOI] [PubMed] [Google Scholar]
- Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
- Thompson E. B., Tomkins G. M., Curran J. F. Induction of tyrosine alpha-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci U S A. 1966 Jul;56(1):296–303. doi: 10.1073/pnas.56.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson H. J., Meeker L. D., Kokoska S. Effect of an inorganic and organic form of dietary selenium on the promotional stage of mammary carcinogenesis in the rat. Cancer Res. 1984 Jul;44(7):2803–2806. [PubMed] [Google Scholar]
- Wagner J., Danzin C., Mamont P. Reversed-phase ion-pair liquid chromatographic procedure for the simultaneous analysis of S-adenosylmethionine, its metabolites and the natural polyamines. J Chromatogr. 1982 Feb 12;227(2):349–368. doi: 10.1016/s0378-4347(00)80389-8. [DOI] [PubMed] [Google Scholar]