Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 6;69(Pt 4):o495–o496. doi: 10.1107/S1600536813005710

{2,7-Dieth­oxy-8-[(naphthalen-1-yl)carbon­yl]naph­thalen-1-yl}(naphthalen-1-yl)methanone

Takehiro Tsumuki a, Ryo Takeuchi a, Hiroyuki Kawano b, Noriyuki Yonezawa a, Akiko Okamoto a,*
PMCID: PMC3629527  PMID: 23634045

Abstract

In the title compound, C36H28O4, the 1-naphthoyl groups at the 1- and 8-positions of the central 2,7-dieth­oxy­naphthalene ring system are aligned almost anti­parallel and make a dihedral angle of 76.59 (4)°. The dihedral angles between the central 2,7-dieth­oxy­naphthalene ring system and the terminal naphthalene ring systems are 86.48 (4) and 83.97 (4)°. In the crystal, C—H⋯π inter­actions between the central naphthalene ring systems and the naphthoyl groups are observed along the a axis, with the mol­ecules forming a columnar structure. The columns are linked into chains parallel to the b axis by C—H⋯O inter­actions.

Related literature  

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Tsumuki et al. (2011); Sakamoto et al. (2012); Isogai et al. (2013); Tsumuki et al. (2013); Yoshiwaka et al. (2013).graphic file with name e-69-0o495-scheme1.jpg

Experimental  

Crystal data  

  • C36H28O4

  • M r = 524.58

  • Triclinic, Inline graphic

  • a = 8.76532 (16) Å

  • b = 11.4266 (2) Å

  • c = 14.1972 (3) Å

  • α = 99.080 (1)°

  • β = 99.036 (1)°

  • γ = 104.277 (1)°

  • V = 1331.94 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.20 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.689, T max = 0.877

  • 24143 measured reflections

  • 4800 independent reflections

  • 4142 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.106

  • S = 1.07

  • 4800 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813005710/pk2467sup1.cif

e-69-0o495-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813005710/pk2467Isup2.hkl

e-69-0o495-Isup2.hkl (230.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813005710/pk2467Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 and Cg6 are the centroids of the C16–C21 and C27–C32 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg4i 0.95 2.77 3.5662 (15) 142
C7—H7⋯Cg6i 0.95 2.76 3.5662 (16) 143
C30—H30⋯O2ii 0.95 2.53 3.3289 (19) 142
C34—H34A⋯O1iii 0.98 2.47 3.423 (2) 163
C35—H35B⋯O2iv 0.99 2.59 3.5476 (17) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by an Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

supplementary crystallographic information

Comment

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011). Furthermore, crystal structures of 1,8-diaroylnaphthalene analogues bearing various alkoxy and aryloxy groups at the 2,7-positions such as 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012) and [8-(4-phenoxybenzoyl)-2,7-bis(propan-2-yloxy)naphthalen-1-yl](4-phenoxyphenyl)methanone (Yoshiwaka et al., 2013) have been also revealed. Some 1,8-diaroylnaphthalene compounds bearing the ethoxy group, {2,7-diethoxy-8-[(naphthalen-2-yl)-carbonyl]naphthalen-1-yl}(naphthalen-2-yl)methanone (Tsumuki et al., 2013) and (8-benzoyl-2,7-diethoxynaphthalen-1-yl)(phenyl)methanone (Isogai et al., 2013), are stabilized by the molecular packing of C—H···O interactions between the aroyl groups. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, the 2,7-diethoxynaphthalene bearing α-naphthoyl groups at the 1,8-positions, is reported on herein.

The molecular structure of the title molecule is illustrated in Fig.1. The two terminal naphthoyl groups are oriented in opposite directions and are twisted away from the central 2,7-diethoxynaphthalene unit. The carbonyl moieties deviate slightly from the attached naphthalene rings. The dihedral angle between the two naphthalene rings of the terminal naphthoyl groups (C12–C21 and C23–C32) is 76.59 (4)°. The dihedral angles between the terminal naphthalene rings and the central naphthalene ring (C1–C10) are 86.48 (4) and 83.97 (4)°. The torsion angles between the carbonyl moieties and the central naphthalene ring are -60.91 (16)° (C10—C1—C11—O1) and -65.50 (17)° (C10—C9—C22—O2), and those between the carbonyl moieties and the terminal naphthalene rings are -47.50 (17)° (O1—C11—C12—C21) and -46.38 (17)° (O2—C22—C23—C32).

In the molecular packing, C—H···π interactions between the central naphthalene rings and the naphthoyl groups are observed along the a axis, and form columnar structures (Fig. 2, 3 and Table 1). Each column is linked into chains along the b axis by C—H···O interactions (Fig. 4 and Table 1).

Experimental

To a solution of 1-naphthoyl chloride (630 mg, 3.3 mmol) and TiCl4 (1.88 g, 9.9 mmol) in CH2Cl2 (2.5 ml), 2,7-diethoxynaphthalene (220 mg, 1.0 mmol) was added. The reaction mixture was stirred at r.t. for 3 h, then poured into ice-cold water (20 ml). The aqueous layer was extracted with CHCl3 (20 ml × 3). The combined organic extracts were washed with 2 M aqueous NaOH (25 ml × 3) followed by washing with brine (25 ml × 3). The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 95%). The crude product was purified by recrystallization from chloroform (isolated yield 60%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from chloroform.

1H NMR δ (500 MHz, CDCl3): 0.57 (6H, broad), 3.78 (4H, broad), 7.13 (2H, d, J = 9.0 Hz), 7.27–7.33 (6H, m), 7.71–7.83 (6H, m), 7.91 (2H, d, J = 9.0 Hz), 8.15 (2H, broad) p.p.m.; 13C NMR δ (125 MHz, CDCl3): 14.12, 64.99, 112.73, 124.29, 124.70,125.53, 125.65, 126.45, 127.26, 127.88, 130.31, 130.52, 130.85, 132.33, 132.39,133.61, 137.15, 156.87, 199.49 p.p.m.; IR (KBr): 1658, 1607, 1512, 1471, 1275 cm-1; HRMS (m/z): [M+H]+ calcd. for C36H29O4, 525.2066, found, 525.2032.

Refinement

All the H atoms were located in a difference Fourier map and were subsequently refined as riding atoms: C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The arrangement of the molecules in the crystal structure, viewed down the a axis.

Fig. 3.

Fig. 3.

A partial view of the crystal packing of the title compound, showing the intermolecular C—H···π interactions. Cg4 and Cg6 are centroid of the C16–C21 and C27–C32 (see Table 1 for details; symmetry codes: (i) 1 + x, y, z).

Fig. 4.

Fig. 4.

A partial view of the crystal packing of the title compound, showing the intermolecular C—H···O interactions (see Table 1 for details; symmetry codes: (ii) 1 - x, 2 - y, 2 - z; (iii) - x, - 1 - y, - 1 - z (iv); - x, 2 - y, 2 - z).

Crystal data

C36H28O4 Z = 2
Mr = 524.58 F(000) = 552
Triclinic, P1 Dx = 1.308 Mg m3
Hall symbol: -P 1 Melting point = 506.6–508.4 K
a = 8.76532 (16) Å Cu Kα radiation, λ = 1.54187 Å
b = 11.4266 (2) Å Cell parameters from 20940 reflections
c = 14.1972 (3) Å θ = 3.2–68.2°
α = 99.080 (1)° µ = 0.67 mm1
β = 99.036 (1)° T = 193 K
γ = 104.277 (1)° Platelet, colorless
V = 1331.94 (4) Å3 0.60 × 0.40 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 4800 independent reflections
Radiation source: rotating anode 4142 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
Detector resolution: 10.000 pixels mm-1 θmax = 68.2°, θmin = 3.2°
ω scans h = −10→10
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −13→13
Tmin = 0.689, Tmax = 0.877 l = −17→17
24143 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.058P)2 + 0.2087P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
4800 reflections Δρmax = 0.20 e Å3
364 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0072 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.08739 (10) 0.64809 (8) 0.66867 (6) 0.0379 (2)
O2 0.19599 (10) 0.86929 (8) 0.83185 (6) 0.0388 (2)
O3 −0.20151 (10) 0.67148 (9) 0.48478 (6) 0.0419 (2)
O4 −0.01872 (10) 0.83966 (9) 1.00812 (6) 0.0429 (2)
C1 −0.13726 (14) 0.73032 (10) 0.65387 (9) 0.0312 (3)
C2 −0.25357 (15) 0.70050 (11) 0.56859 (9) 0.0345 (3)
C3 −0.41501 (15) 0.69700 (12) 0.56983 (10) 0.0399 (3)
H3 −0.4924 0.6770 0.5106 0.048*
C4 −0.45851 (15) 0.72264 (12) 0.65675 (10) 0.0407 (3)
H4 −0.5671 0.7211 0.6576 0.049*
C5 −0.34659 (14) 0.75145 (11) 0.74590 (9) 0.0360 (3)
C6 −0.39763 (15) 0.77691 (13) 0.83424 (10) 0.0429 (3)
H6 −0.5073 0.7742 0.8325 0.052*
C7 −0.29423 (16) 0.80531 (13) 0.92212 (10) 0.0430 (3)
H7 −0.3305 0.8231 0.9810 0.052*
C8 −0.13216 (15) 0.80769 (12) 0.92383 (9) 0.0364 (3)
C9 −0.07595 (14) 0.78095 (11) 0.83942 (9) 0.0313 (3)
C10 −0.18165 (14) 0.75431 (10) 0.74623 (9) 0.0313 (3)
C11 0.02752 (14) 0.72402 (10) 0.63903 (8) 0.0306 (3)
C12 0.11099 (14) 0.81261 (11) 0.58353 (9) 0.0327 (3)
C13 0.11822 (17) 0.93448 (12) 0.61063 (10) 0.0440 (3)
H13 0.0676 0.9596 0.6617 0.053*
C14 0.1996 (2) 1.02299 (13) 0.56390 (13) 0.0560 (4)
H14 0.2063 1.1076 0.5848 0.067*
C15 0.26881 (18) 0.98776 (14) 0.48875 (12) 0.0530 (4)
H15 0.3246 1.0484 0.4581 0.064*
C16 0.25873 (15) 0.86244 (12) 0.45584 (9) 0.0402 (3)
C17 0.31914 (16) 0.82289 (15) 0.37281 (10) 0.0489 (4)
H17 0.3743 0.8826 0.3412 0.059*
C18 0.29954 (16) 0.70146 (15) 0.33786 (10) 0.0481 (4)
H18 0.3374 0.6766 0.2809 0.058*
C19 0.22326 (15) 0.61257 (13) 0.38595 (9) 0.0427 (3)
H19 0.2106 0.5277 0.3615 0.051*
C20 0.16714 (14) 0.64674 (11) 0.46737 (9) 0.0351 (3)
H20 0.1180 0.5853 0.4997 0.042*
C21 0.18097 (13) 0.77222 (11) 0.50452 (8) 0.0325 (3)
C22 0.10078 (14) 0.78898 (10) 0.85622 (8) 0.0307 (3)
C23 0.15239 (14) 0.69517 (11) 0.90702 (8) 0.0321 (3)
C24 0.06855 (16) 0.57328 (11) 0.87330 (9) 0.0385 (3)
H24 −0.0238 0.5518 0.8222 0.046*
C25 0.11646 (19) 0.47971 (13) 0.91269 (11) 0.0484 (3)
H25 0.0583 0.3957 0.8873 0.058*
C26 0.2463 (2) 0.50928 (14) 0.98733 (11) 0.0515 (4)
H26 0.2797 0.4455 1.0128 0.062*
C27 0.33248 (16) 0.63426 (14) 1.02763 (9) 0.0426 (3)
C28 0.46076 (18) 0.66683 (18) 1.10997 (11) 0.0558 (4)
H28 0.4948 0.6036 1.1360 0.067*
C29 0.53555 (17) 0.78660 (18) 1.15211 (10) 0.0583 (4)
H29 0.6198 0.8066 1.2080 0.070*
C30 0.48893 (16) 0.88165 (16) 1.11340 (10) 0.0518 (4)
H30 0.5410 0.9654 1.1437 0.062*
C31 0.36913 (15) 0.85385 (13) 1.03242 (9) 0.0408 (3)
H31 0.3408 0.9188 1.0061 0.049*
C32 0.28633 (14) 0.72967 (12) 0.98702 (8) 0.0351 (3)
C33 −0.31667 (16) 0.62668 (13) 0.39438 (9) 0.0426 (3)
H33A −0.3755 0.6882 0.3820 0.051*
H33B −0.3954 0.5489 0.3965 0.051*
C34 −0.2252 (2) 0.60500 (16) 0.31584 (10) 0.0560 (4)
H34A −0.1664 0.5449 0.3294 0.067*
H34B −0.1490 0.6829 0.3138 0.067*
H34C −0.3005 0.5730 0.2529 0.067*
C35 −0.06724 (16) 0.86450 (12) 1.09918 (9) 0.0395 (3)
H35A −0.1508 0.7922 1.1063 0.047*
H35B −0.1118 0.9364 1.1028 0.047*
C36 0.07978 (18) 0.89118 (14) 1.17804 (10) 0.0472 (3)
H36A 0.1255 0.8209 1.1717 0.057*
H36B 0.0504 0.9048 1.2419 0.057*
H36C 0.1595 0.9652 1.1721 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0401 (5) 0.0440 (5) 0.0379 (5) 0.0200 (4) 0.0118 (4) 0.0157 (4)
O2 0.0334 (5) 0.0402 (5) 0.0419 (5) 0.0070 (4) 0.0067 (4) 0.0117 (4)
O3 0.0345 (5) 0.0570 (6) 0.0308 (5) 0.0128 (4) 0.0012 (4) 0.0042 (4)
O4 0.0364 (5) 0.0645 (6) 0.0302 (5) 0.0211 (4) 0.0071 (4) 0.0055 (4)
C1 0.0292 (6) 0.0307 (6) 0.0343 (6) 0.0085 (5) 0.0052 (5) 0.0093 (5)
C2 0.0336 (6) 0.0352 (6) 0.0346 (6) 0.0094 (5) 0.0049 (5) 0.0094 (5)
C3 0.0307 (6) 0.0474 (7) 0.0384 (7) 0.0080 (5) −0.0011 (5) 0.0119 (6)
C4 0.0268 (6) 0.0497 (8) 0.0474 (7) 0.0108 (5) 0.0055 (5) 0.0169 (6)
C5 0.0287 (6) 0.0412 (7) 0.0405 (7) 0.0112 (5) 0.0070 (5) 0.0132 (5)
C6 0.0296 (6) 0.0597 (8) 0.0467 (8) 0.0186 (6) 0.0125 (5) 0.0177 (6)
C7 0.0386 (7) 0.0600 (8) 0.0387 (7) 0.0223 (6) 0.0144 (5) 0.0144 (6)
C8 0.0337 (6) 0.0440 (7) 0.0345 (6) 0.0150 (5) 0.0059 (5) 0.0108 (5)
C9 0.0301 (6) 0.0331 (6) 0.0337 (6) 0.0122 (5) 0.0073 (5) 0.0091 (5)
C10 0.0292 (6) 0.0313 (6) 0.0353 (6) 0.0099 (5) 0.0059 (5) 0.0104 (5)
C11 0.0311 (6) 0.0336 (6) 0.0257 (5) 0.0091 (5) 0.0033 (4) 0.0041 (5)
C12 0.0274 (6) 0.0352 (6) 0.0343 (6) 0.0083 (5) 0.0016 (5) 0.0088 (5)
C13 0.0447 (7) 0.0376 (7) 0.0500 (8) 0.0126 (6) 0.0082 (6) 0.0093 (6)
C14 0.0584 (9) 0.0336 (7) 0.0743 (11) 0.0085 (6) 0.0098 (8) 0.0168 (7)
C15 0.0466 (8) 0.0470 (8) 0.0667 (10) 0.0039 (6) 0.0119 (7) 0.0298 (7)
C16 0.0292 (6) 0.0499 (8) 0.0415 (7) 0.0067 (5) 0.0026 (5) 0.0206 (6)
C17 0.0341 (7) 0.0743 (10) 0.0429 (8) 0.0104 (6) 0.0093 (6) 0.0312 (7)
C18 0.0372 (7) 0.0768 (11) 0.0331 (7) 0.0175 (7) 0.0084 (5) 0.0155 (7)
C19 0.0342 (7) 0.0552 (8) 0.0363 (7) 0.0126 (6) 0.0048 (5) 0.0044 (6)
C20 0.0283 (6) 0.0410 (7) 0.0340 (6) 0.0067 (5) 0.0042 (5) 0.0084 (5)
C21 0.0233 (5) 0.0415 (7) 0.0317 (6) 0.0071 (5) 0.0006 (4) 0.0128 (5)
C22 0.0300 (6) 0.0348 (6) 0.0265 (6) 0.0098 (5) 0.0049 (5) 0.0034 (5)
C23 0.0303 (6) 0.0391 (6) 0.0311 (6) 0.0136 (5) 0.0102 (5) 0.0089 (5)
C24 0.0417 (7) 0.0396 (7) 0.0356 (6) 0.0119 (5) 0.0100 (5) 0.0086 (5)
C25 0.0640 (9) 0.0384 (7) 0.0488 (8) 0.0193 (6) 0.0170 (7) 0.0132 (6)
C26 0.0662 (10) 0.0569 (9) 0.0508 (8) 0.0367 (8) 0.0221 (7) 0.0259 (7)
C27 0.0406 (7) 0.0661 (9) 0.0345 (7) 0.0275 (6) 0.0158 (5) 0.0210 (6)
C28 0.0453 (8) 0.0967 (13) 0.0415 (8) 0.0351 (8) 0.0136 (6) 0.0318 (8)
C29 0.0339 (7) 0.1093 (14) 0.0337 (7) 0.0193 (8) 0.0065 (6) 0.0219 (8)
C30 0.0329 (7) 0.0773 (10) 0.0369 (7) 0.0036 (7) 0.0087 (6) 0.0046 (7)
C31 0.0311 (6) 0.0548 (8) 0.0358 (7) 0.0099 (6) 0.0092 (5) 0.0079 (6)
C32 0.0309 (6) 0.0505 (7) 0.0303 (6) 0.0171 (5) 0.0125 (5) 0.0116 (5)
C33 0.0426 (7) 0.0432 (7) 0.0364 (7) 0.0109 (6) −0.0042 (5) 0.0059 (5)
C34 0.0647 (10) 0.0738 (10) 0.0340 (7) 0.0399 (8) −0.0017 (6) 0.0034 (7)
C35 0.0448 (7) 0.0451 (7) 0.0345 (7) 0.0209 (6) 0.0129 (6) 0.0074 (5)
C36 0.0519 (8) 0.0569 (8) 0.0339 (7) 0.0207 (7) 0.0083 (6) 0.0042 (6)

Geometric parameters (Å, º)

O1—C11 1.2148 (14) C18—H18 0.9500
O2—C22 1.2131 (14) C19—C20 1.3644 (18)
O3—C2 1.3617 (15) C19—H19 0.9500
O3—C33 1.4350 (14) C20—C21 1.4157 (18)
O4—C8 1.3650 (15) C20—H20 0.9500
O4—C35 1.4315 (15) C22—C23 1.5015 (16)
C1—C2 1.3901 (16) C23—C24 1.3723 (17)
C1—C10 1.4301 (17) C23—C32 1.4266 (16)
C1—C11 1.5093 (16) C24—C25 1.4031 (18)
C2—C3 1.4088 (18) C24—H24 0.9500
C3—C4 1.3576 (19) C25—C26 1.361 (2)
C3—H3 0.9500 C25—H25 0.9500
C4—C5 1.4113 (17) C26—C27 1.418 (2)
C4—H4 0.9500 C26—H26 0.9500
C5—C6 1.4081 (18) C27—C28 1.419 (2)
C5—C10 1.4373 (17) C27—C32 1.4239 (18)
C6—C7 1.3621 (19) C28—C29 1.355 (2)
C6—H6 0.9500 C28—H28 0.9500
C7—C8 1.4104 (18) C29—C30 1.409 (2)
C7—H7 0.9500 C29—H29 0.9500
C8—C9 1.3843 (17) C30—C31 1.3661 (19)
C9—C10 1.4319 (16) C30—H30 0.9500
C9—C22 1.5073 (16) C31—C32 1.4185 (19)
C11—C12 1.4994 (16) C31—H31 0.9500
C12—C13 1.3678 (18) C33—C34 1.496 (2)
C12—C21 1.4283 (17) C33—H33A 0.9900
C13—C14 1.406 (2) C33—H33B 0.9900
C13—H13 0.9500 C34—H34A 0.9800
C14—C15 1.363 (2) C34—H34B 0.9800
C14—H14 0.9500 C34—H34C 0.9800
C15—C16 1.411 (2) C35—C36 1.5008 (19)
C15—H15 0.9500 C35—H35A 0.9900
C16—C17 1.421 (2) C35—H35B 0.9900
C16—C21 1.4251 (17) C36—H36A 0.9800
C17—C18 1.356 (2) C36—H36B 0.9800
C17—H17 0.9500 C36—H36C 0.9800
C18—C19 1.404 (2)
C2—O3—C33 119.13 (10) C21—C20—H20 119.5
C8—O4—C35 118.97 (10) C20—C21—C16 118.15 (12)
C2—C1—C10 119.84 (11) C20—C21—C12 123.61 (10)
C2—C1—C11 114.61 (10) C16—C21—C12 118.08 (11)
C10—C1—C11 125.36 (10) O2—C22—C23 122.19 (10)
O3—C2—C1 115.41 (11) O2—C22—C9 121.24 (10)
O3—C2—C3 122.72 (11) C23—C22—C9 116.54 (10)
C1—C2—C3 121.84 (12) C24—C23—C32 120.11 (11)
C4—C3—C2 119.11 (11) C24—C23—C22 118.12 (11)
C4—C3—H3 120.4 C32—C23—C22 121.76 (11)
C2—C3—H3 120.4 C23—C24—C25 121.34 (13)
C3—C4—C5 121.73 (12) C23—C24—H24 119.3
C3—C4—H4 119.1 C25—C24—H24 119.3
C5—C4—H4 119.1 C26—C25—C24 119.97 (13)
C6—C5—C4 119.63 (11) C26—C25—H25 120.0
C6—C5—C10 120.35 (11) C24—C25—H25 120.0
C4—C5—C10 120.01 (12) C25—C26—C27 120.78 (12)
C7—C6—C5 121.85 (12) C25—C26—H26 119.6
C7—C6—H6 119.1 C27—C26—H26 119.6
C5—C6—H6 119.1 C26—C27—C28 121.37 (13)
C6—C7—C8 118.56 (12) C26—C27—C32 119.59 (12)
C6—C7—H7 120.7 C28—C27—C32 119.00 (14)
C8—C7—H7 120.7 C29—C28—C27 121.08 (14)
O4—C8—C9 115.18 (11) C29—C28—H28 119.5
O4—C8—C7 122.69 (11) C27—C28—H28 119.5
C9—C8—C7 122.11 (11) C28—C29—C30 120.29 (13)
C8—C9—C10 120.16 (11) C28—C29—H29 119.9
C8—C9—C22 114.25 (10) C30—C29—H29 119.9
C10—C9—C22 125.53 (10) C31—C30—C29 120.27 (15)
C1—C10—C9 125.67 (11) C31—C30—H30 119.9
C1—C10—C5 117.42 (11) C29—C30—H30 119.9
C9—C10—C5 116.91 (11) C30—C31—C32 121.15 (14)
O1—C11—C12 121.76 (11) C30—C31—H31 119.4
O1—C11—C1 121.13 (10) C32—C31—H31 119.4
C12—C11—C1 117.07 (10) C31—C32—C27 118.16 (12)
C13—C12—C21 120.45 (11) C31—C32—C23 123.58 (11)
C13—C12—C11 117.95 (11) C27—C32—C23 118.12 (12)
C21—C12—C11 121.60 (10) O3—C33—C34 107.15 (11)
C12—C13—C14 120.83 (14) O3—C33—H33A 110.3
C12—C13—H13 119.6 C34—C33—H33A 110.3
C14—C13—H13 119.6 O3—C33—H33B 110.3
C15—C14—C13 120.21 (14) C34—C33—H33B 110.3
C15—C14—H14 119.9 H33A—C33—H33B 108.5
C13—C14—H14 119.9 C33—C34—H34A 109.5
C14—C15—C16 120.85 (12) C33—C34—H34B 109.5
C14—C15—H15 119.6 H34A—C34—H34B 109.5
C16—C15—H15 119.6 C33—C34—H34C 109.5
C15—C16—C17 121.61 (12) H34A—C34—H34C 109.5
C15—C16—C21 119.50 (13) H34B—C34—H34C 109.5
C17—C16—C21 118.84 (13) O4—C35—C36 107.01 (11)
C18—C17—C16 121.22 (12) O4—C35—H35A 110.3
C18—C17—H17 119.4 C36—C35—H35A 110.3
C16—C17—H17 119.4 O4—C35—H35B 110.3
C17—C18—C19 119.91 (13) C36—C35—H35B 110.3
C17—C18—H18 120.0 H35A—C35—H35B 108.6
C19—C18—H18 120.0 C35—C36—H36A 109.5
C20—C19—C18 120.76 (13) C35—C36—H36B 109.5
C20—C19—H19 119.6 H36A—C36—H36B 109.5
C18—C19—H19 119.6 C35—C36—H36C 109.5
C19—C20—C21 121.07 (12) H36A—C36—H36C 109.5
C19—C20—H20 119.5 H36B—C36—H36C 109.5
C33—O3—C2—C1 173.31 (10) C14—C15—C16—C21 −2.7 (2)
C33—O3—C2—C3 −4.73 (17) C15—C16—C17—C18 −175.60 (13)
C10—C1—C2—O3 −175.91 (10) C21—C16—C17—C18 2.06 (19)
C11—C1—C2—O3 −0.66 (15) C16—C17—C18—C19 −2.2 (2)
C10—C1—C2—C3 2.16 (18) C17—C18—C19—C20 0.5 (2)
C11—C1—C2—C3 177.41 (11) C18—C19—C20—C21 1.36 (18)
O3—C2—C3—C4 177.47 (11) C19—C20—C21—C16 −1.48 (17)
C1—C2—C3—C4 −0.46 (19) C19—C20—C21—C12 173.70 (11)
C2—C3—C4—C5 −0.7 (2) C15—C16—C21—C20 177.51 (11)
C3—C4—C5—C6 −179.75 (12) C17—C16—C21—C20 −0.20 (17)
C3—C4—C5—C10 0.06 (19) C15—C16—C21—C12 2.06 (17)
C4—C5—C6—C7 −179.93 (12) C17—C16—C21—C12 −175.65 (10)
C10—C5—C6—C7 0.3 (2) C13—C12—C21—C20 −174.76 (12)
C5—C6—C7—C8 −0.7 (2) C11—C12—C21—C20 5.09 (17)
C35—O4—C8—C9 −177.76 (10) C13—C12—C21—C16 0.42 (16)
C35—O4—C8—C7 3.98 (18) C11—C12—C21—C16 −179.73 (10)
C6—C7—C8—O4 177.47 (12) C8—C9—C22—O2 −111.50 (13)
C6—C7—C8—C9 −0.7 (2) C10—C9—C22—O2 65.60 (17)
O4—C8—C9—C10 −175.82 (10) C8—C9—C22—C23 66.74 (14)
C7—C8—C9—C10 2.45 (19) C10—C9—C22—C23 −116.16 (12)
O4—C8—C9—C22 1.45 (16) O2—C22—C23—C24 −132.46 (12)
C7—C8—C9—C22 179.73 (11) C9—C22—C23—C24 49.32 (15)
C2—C1—C10—C9 177.29 (11) O2—C22—C23—C32 46.38 (17)
C11—C1—C10—C9 2.59 (18) C9—C22—C23—C32 −131.84 (11)
C2—C1—C10—C5 −2.66 (17) C32—C23—C24—C25 −3.29 (18)
C11—C1—C10—C5 −177.36 (10) C22—C23—C24—C25 175.57 (12)
C8—C9—C10—C1 177.30 (11) C23—C24—C25—C26 1.5 (2)
C22—C9—C10—C1 0.36 (19) C24—C25—C26—C27 1.4 (2)
C8—C9—C10—C5 −2.76 (17) C25—C26—C27—C28 175.37 (13)
C22—C9—C10—C5 −179.70 (10) C25—C26—C27—C32 −2.4 (2)
C6—C5—C10—C1 −178.61 (11) C26—C27—C28—C29 −175.54 (13)
C4—C5—C10—C1 1.59 (17) C32—C27—C28—C29 2.3 (2)
C6—C5—C10—C9 1.45 (17) C27—C28—C29—C30 −1.3 (2)
C4—C5—C10—C9 −178.35 (11) C28—C29—C30—C31 −0.7 (2)
C2—C1—C11—O1 −114.04 (12) C29—C30—C31—C32 1.7 (2)
C10—C1—C11—O1 60.90 (16) C30—C31—C32—C27 −0.59 (18)
C2—C1—C11—C12 64.06 (14) C30—C31—C32—C23 175.03 (11)
C10—C1—C11—C12 −121.00 (12) C26—C27—C32—C31 176.52 (12)
O1—C11—C12—C13 −132.64 (13) C28—C27—C32—C31 −1.34 (17)
C1—C11—C12—C13 49.27 (15) C26—C27—C32—C23 0.66 (18)
O1—C11—C12—C21 47.51 (16) C28—C27—C32—C23 −177.21 (11)
C1—C11—C12—C21 −130.58 (11) C24—C23—C32—C31 −173.48 (12)
C21—C12—C13—C14 −2.40 (19) C22—C23—C32—C31 7.71 (17)
C11—C12—C13—C14 177.75 (12) C24—C23—C32—C27 2.15 (17)
C12—C13—C14—C15 1.9 (2) C22—C23—C32—C27 −176.67 (11)
C13—C14—C15—C16 0.7 (2) C2—O3—C33—C34 179.03 (11)
C14—C15—C16—C17 175.00 (14) C8—O4—C35—C36 177.51 (11)

Hydrogen-bond geometry (Å, º)

Cg4 and Cg6 are the centroids of the C16–C21 and C27–C32 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C3—H3···Cg4i 0.95 2.77 3.5662 (15) 142
C7—H7···Cg6i 0.95 2.76 3.5662 (16) 143
C30—H30···O2ii 0.95 2.53 3.3289 (19) 142
C34—H34A···O1iii 0.98 2.47 3.423 (2) 163
C35—H35B···O2iv 0.99 2.59 3.5476 (17) 163

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+2; (iii) −x, −y+1, −z+1; (iv) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2467).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Burnett, M. N. & &Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Isogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71. [DOI] [PMC free article] [PubMed]
  5. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  6. Okamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  7. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  8. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095. [DOI] [PMC free article] [PubMed]
  12. Tsumuki, T., Okamoto, A., Oike, H. & Yonezawa, N. (2013). Acta Cryst. E69, o369. [DOI] [PMC free article] [PubMed]
  13. Yoshiwaka, S., Hijikata, D., Sasagawa, K., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o242. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813005710/pk2467sup1.cif

e-69-0o495-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813005710/pk2467Isup2.hkl

e-69-0o495-Isup2.hkl (230.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813005710/pk2467Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES