Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 24;69(Pt 5):m284–m285. doi: 10.1107/S1600536813010532

(Tris{2-[2-(2,3,5,6-tetra­fluoro-4-iodo­phen­oxy)eth­oxy]eth­yl}amine)­potassium iodide

Gabriella Cavallo a, Hannes Neukirch a, Pierangelo Metrangolo a, Tullio Pilati a, Giuseppe Resnati a, Giancarlo Terraneo a,*
PMCID: PMC3647819  PMID: 23723785

Abstract

The title adduct, [K(C30H24F12I3NO6)]I, gives an extended tape of cations linked through I⋯I halogen bonds (XBs), two of them being quite short and one quite long. In the structure, the cation is hosted in a cavity formed by the arms of the podand which presents a closed conformation wherein two tetra­fluoro­iodo­benzene rings are near parallel [dihedral angle = 15.8 (4)°; centroid–centroid distance = 3.908 (5) Å] and the third ring is closer to orthogonal [dihedral angles = 66.28 (14) and 75.20 (19)°] to the other two rings. The coordination sphere of the K+ cation is composed of the six O atoms, the N atom and an F atom in the ortho position of one of the rings.

Related literature  

For the synthesis of tris­{2-[2-(2,3,5,6-tetra­fluoro-4-iodo­phen­oxy)eth­oxy]eth­yl}amine and its NaI adduct, see: Mele et al. (2005). For its HI salt, see: Abate et al. (2009).graphic file with name e-69-0m284-scheme1.jpg

Experimental  

Crystal data  

  • [K(C30H24F12I3NO6)]I

  • M r = 1269.20

  • Monoclinic, Inline graphic

  • a = 13.037 (2) Å

  • b = 23.355 (3) Å

  • c = 13.787 (2) Å

  • β = 104.83 (3)°

  • V = 4058.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 295 K

  • 0.34 × 0.22 × 0.10 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.759, T max = 1.000

  • 24956 measured reflections

  • 7254 independent reflections

  • 5627 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.06

  • 7254 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 2.37 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2012.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813010532/pk2473sup1.cif

e-69-0m284-sup1.cif (37.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010532/pk2473Isup2.hkl

e-69-0m284-Isup2.hkl (397.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. I⋯I XBs and short F⋯F contacts (Å and °).

C—XY XY C—XY
C8—I1⋯I4 3.4106 (6) 179.30 (13)
C8—I2⋯I4i 3.4157 (6) 168.45 (13)
C8—I3⋯I4ii 3.9437 (7) 179.21 (18)

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, −z + 1.Note: for the sake of comparison, a Cambridge Structural Database (Allen, 2002) search for C—I⋯I contacts gives 109 hits with a mean I⋯I distance of 3.53 (3) Å, the lower and higher quartiles being 3.43 and 3.63 Å, respectively.

Table 2. Short contacts in receptor–metal cation system for KI and NaI adducts.

  K+ Na+
N1 2.903 (4) 2.515 (15)
O1 2.744 (3) 2.388 (12)
O2 2.849 (3) 2.716 (12)
O3 2.707 (4) 2.463 (13)
O4 2.809 (4) 2.424 (12)
O5 2.756 (4) 2.371 (14)
O6 2.911 (4) 4.39 (2)
F4 3.041 (4) 3.124 (17)

Note: in the NaI adduct, Na+⋯F4 and Na+⋯O6 distances cannot be considered as bond lengths, thus they are only reported for the sake of comparison.

Acknowledgments

GC, PM, GR and GT acknowledge Fondazione Cariplo (projects 2009–2550 and 2010–1351) for financial support.

supplementary crystallographic information

Comment

Tris(2-(2-(2,3,5,6-tetrafluoro-4-iodophenoxy)ethoxy)ethyl)amine has been systhesized as neutral ditopic receptor for alkali metal halide such as NaI, Mele et al.,(2005). It has been also employed as receptor for hydrogen halide systems such as HI, Abate et al.,(2009). Here the supramolecular cations (Fig. 1) formed by potassium coordination are linked by two short (namely strong) and one long (namely week) C—I···I- XBs (see Table A) and unlimited tapes are formed. A similar interactions pattern is observed in the isomorphous NaI adduct. In both structures the cation is hosted in a cavity formed by the podand's arms which presents a closed conformation wherein two tetrafluoroiodobenzene rings strictly parallel and the third ring nearly orthogonal. In this system the three C—I bonds are only slightly divergent from each other. The small Na+ cation is much more masked than the larger K+ one (see Fig. 2). Table B reports some characteristic of the cavity and evidences the differences between the K+ and Na+ coordination. Figure 3 shows two projections of the salt tapes. The ditopic receptor/HI adduct presents a completely different pattern of interactions. The podand molecules and iodide anions work as bidentate XB donors and acceptors, respectively. The H+ is simply bound to the N atom, the supercation adopts conformation different from adopted on K+ and Na+ coordination as the three tetrafluoroiodobenzene rings are completely divergent.

Experimental

The chemical synthesis of the neutral triamine compound was carried on following the procedure reported in Mele et al., (2005). Good crystals were obtained from a CHCl3 solution of the KI complex after slow solvent diffusion in a box containing vaseline oil.

Refinement

Hydrogen atoms were constrained with C—H = 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP-3 view of the salt with numbering scheme. Probability level at 50%.

Fig. 2.

Fig. 2.

Representation of two receptor/KI and receptor/NaI units (top and bottom, respectively) viewed approximately along the tape direction. The spacefill style evidences how the receptor molecule masks differently the different cations.

Fig. 3.

Fig. 3.

The salt tape viewed along the a-axis (Mercury ball and stick style). Black dashed lines represent the I···I- XBs.

Crystal data

[K(C30H24F12I3NO6)]I F(000) = 2392
Mr = 1269.20 Dx = 2.077 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 13.037 (2) Å Cell parameters from 8602 reflections
b = 23.355 (3) Å θ = 3.0–22.9°
c = 13.787 (2) Å µ = 3.27 mm1
β = 104.83 (3)° T = 295 K
V = 4058.0 (11) Å3 Prism, colourless
Z = 4 0.34 × 0.22 × 0.10 mm

Data collection

Bruker SMART APEX diffractometer 7254 independent reflections
Radiation source: fine-focus sealed tube 5627 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω and φ scans θmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −15→15
Tmin = 0.759, Tmax = 1.000 k = −27→27
24956 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.2017P], where P = (Fo2 + 2Fc2)/3
7254 reflections (Δ/σ)max < 0.001
487 parameters Δρmax = 2.37 e Å3
0 restraints Δρmin = −1.25 e Å3

Special details

Experimental. The sample gave two kinds of crystals: rhombic tablets were suitable for data collection, elongated prisms were always twinned of the first. An attempt to collect data at lower temperature failed, probably due to a phase transition or the crystal cracking.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.08073 (3) 0.12743 (2) 0.28500 (3) 0.07572 (13)
I2 0.13900 (4) 0.12647 (2) −0.10931 (3) 0.09463 (16)
I3 0.16503 (3) 0.16739 (2) 0.61000 (4) 0.1204 (2)
I4 −0.11661 (3) −0.01730 (2) 0.27833 (3) 0.08495 (15)
K1 0.16101 (8) 0.43196 (4) 0.21349 (8) 0.0665 (3)
N1 0.1758 (4) 0.54837 (19) 0.1446 (4) 0.0859 (12)
C1 0.0705 (5) 0.5744 (3) 0.1334 (6) 0.107 (2)
H1A 0.0767 0.6155 0.1269 0.128*
H1B 0.0230 0.5603 0.0719 0.128*
C2 0.0235 (5) 0.5624 (2) 0.2174 (6) 0.102 (2)
H2A 0.0740 0.5717 0.2803 0.122*
H2B −0.0391 0.5859 0.2114 0.122*
O1 −0.0043 (3) 0.50404 (14) 0.2166 (3) 0.0835 (10)
C3 −0.0554 (5) 0.4908 (2) 0.2922 (5) 0.0985 (19)
H3A −0.1138 0.5171 0.2887 0.118*
H3B −0.0058 0.4948 0.3576 0.118*
C4 −0.0956 (4) 0.4315 (2) 0.2787 (5) 0.0919 (18)
H4A −0.1385 0.4236 0.3252 0.110*
H4B −0.1394 0.4262 0.2110 0.110*
O2 −0.0044 (3) 0.39276 (15) 0.2977 (3) 0.0834 (10)
C5 −0.0284 (4) 0.3356 (2) 0.2927 (4) 0.0726 (13)
C6 −0.0570 (4) 0.3076 (2) 0.3694 (4) 0.0734 (13)
C7 −0.0718 (4) 0.2493 (2) 0.3675 (4) 0.0749 (13)
C8 −0.0584 (4) 0.21674 (18) 0.2873 (4) 0.0660 (12)
C9 −0.0279 (5) 0.2460 (2) 0.2119 (4) 0.0840 (15)
C10 −0.0125 (5) 0.3019 (2) 0.2141 (4) 0.0846 (15)
F1 −0.0699 (3) 0.33766 (13) 0.4484 (2) 0.0941 (9)
F2 −0.1006 (3) 0.22460 (13) 0.4426 (2) 0.0960 (10)
F3 −0.0133 (4) 0.21664 (15) 0.1329 (2) 0.1187 (13)
F4 0.0159 (3) 0.33044 (14) 0.1398 (3) 0.1113 (11)
C11 0.1926 (7) 0.5433 (3) 0.0455 (5) 0.119 (2)
H11A 0.2008 0.5815 0.0207 0.143*
H11B 0.1296 0.5266 0.0014 0.143*
C12 0.2856 (7) 0.5085 (3) 0.0388 (6) 0.117 (2)
H12A 0.2861 0.5036 −0.0309 0.140*
H12B 0.3506 0.5279 0.0733 0.140*
O3 0.2800 (4) 0.45438 (19) 0.0833 (3) 0.1095 (14)
C13 0.3483 (6) 0.4146 (3) 0.0573 (6) 0.118 (2)
H13A 0.4118 0.4336 0.0492 0.142*
H13B 0.3137 0.3961 −0.0055 0.142*
C14 0.3756 (5) 0.3728 (3) 0.1370 (6) 0.113 (2)
H14A 0.4136 0.3915 0.1985 0.136*
H14B 0.4222 0.3442 0.1201 0.136*
O4 0.2781 (3) 0.34382 (17) 0.1536 (3) 0.0963 (12)
C15 0.2464 (4) 0.2974 (2) 0.0956 (4) 0.0717 (13)
C16 0.1645 (4) 0.2984 (2) 0.0133 (4) 0.0721 (12)
C17 0.1302 (4) 0.2500 (2) −0.0425 (4) 0.0773 (13)
C18 0.1782 (4) 0.1992 (2) −0.0169 (3) 0.0714 (13)
C19 0.2617 (5) 0.1968 (2) 0.0674 (3) 0.0774 (14)
C20 0.2953 (5) 0.2455 (3) 0.1221 (4) 0.0832 (15)
F5 0.1177 (3) 0.34999 (14) −0.0142 (3) 0.1009 (10)
F6 0.0509 (3) 0.25554 (18) −0.1245 (3) 0.1218 (13)
F7 0.3134 (3) 0.14754 (15) 0.0946 (2) 0.1095 (12)
F8 0.3768 (3) 0.24039 (18) 0.2043 (2) 0.1218 (14)
C21 0.2582 (5) 0.5793 (3) 0.2140 (5) 0.0916 (16)
H21A 0.2250 0.6062 0.2502 0.110*
H21B 0.2970 0.6015 0.1757 0.110*
C22 0.3356 (5) 0.5447 (3) 0.2884 (5) 0.0921 (16)
H22A 0.3766 0.5213 0.2539 0.111*
H22B 0.3842 0.5700 0.3339 0.111*
O5 0.2846 (3) 0.50944 (16) 0.3432 (3) 0.0859 (10)
C23 0.3522 (5) 0.4853 (3) 0.4272 (5) 0.1031 (19)
H23A 0.3900 0.5157 0.4698 0.124*
H23B 0.4041 0.4619 0.4065 0.124*
C24 0.2962 (6) 0.4501 (3) 0.4854 (5) 0.110 (2)
H24A 0.3467 0.4347 0.5439 0.132*
H24B 0.2456 0.4735 0.5083 0.132*
O6 0.2412 (4) 0.40369 (18) 0.4250 (3) 0.0985 (12)
C25 0.2263 (5) 0.3547 (2) 0.4710 (4) 0.0802 (14)
C26 0.1778 (5) 0.3506 (3) 0.5479 (5) 0.1009 (19)
C27 0.1658 (5) 0.2973 (3) 0.5890 (5) 0.0983 (18)
C28 0.1908 (5) 0.2488 (3) 0.5517 (4) 0.0932 (17)
C29 0.2358 (8) 0.2504 (3) 0.4750 (6) 0.148 (3)
C30 0.2551 (8) 0.3058 (3) 0.4368 (6) 0.138 (3)
F9 0.1451 (4) 0.3983 (2) 0.5853 (4) 0.1440 (16)
F10 0.1180 (4) 0.2962 (2) 0.6674 (3) 0.1458 (16)
F11 0.2663 (6) 0.20565 (18) 0.4352 (5) 0.199 (3)
F12 0.3054 (6) 0.3040 (2) 0.3641 (4) 0.203 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0783 (2) 0.0641 (2) 0.0865 (2) −0.00030 (15) 0.02418 (18) −0.00568 (15)
I2 0.1145 (3) 0.0786 (3) 0.0969 (3) −0.0213 (2) 0.0383 (2) −0.01458 (19)
I3 0.0933 (3) 0.1262 (4) 0.1488 (4) 0.0136 (3) 0.0440 (3) 0.0550 (3)
I4 0.0860 (3) 0.0669 (2) 0.1078 (3) −0.01087 (17) 0.0354 (2) −0.01963 (18)
K1 0.0724 (6) 0.0548 (6) 0.0779 (6) −0.0008 (5) 0.0294 (5) −0.0074 (5)
N1 0.094 (3) 0.068 (3) 0.099 (3) −0.007 (2) 0.031 (3) 0.001 (2)
C1 0.096 (4) 0.067 (4) 0.152 (6) 0.007 (3) 0.023 (4) 0.020 (4)
C2 0.082 (4) 0.060 (3) 0.170 (6) 0.002 (3) 0.044 (4) 0.002 (4)
O1 0.072 (2) 0.0564 (19) 0.124 (3) 0.0006 (17) 0.028 (2) −0.0066 (19)
C3 0.087 (4) 0.068 (3) 0.149 (6) 0.005 (3) 0.047 (4) −0.011 (3)
C4 0.077 (3) 0.060 (3) 0.146 (5) −0.006 (3) 0.042 (4) −0.014 (3)
O2 0.067 (2) 0.065 (2) 0.128 (3) −0.0003 (17) 0.042 (2) −0.006 (2)
C5 0.065 (3) 0.063 (3) 0.097 (4) −0.002 (2) 0.032 (3) −0.003 (3)
C6 0.067 (3) 0.077 (3) 0.080 (3) 0.000 (3) 0.025 (2) −0.007 (3)
C7 0.078 (3) 0.072 (3) 0.080 (3) 0.003 (3) 0.030 (3) 0.000 (3)
C8 0.072 (3) 0.044 (2) 0.083 (3) 0.006 (2) 0.023 (2) 0.005 (2)
C9 0.106 (4) 0.067 (3) 0.097 (4) 0.000 (3) 0.058 (3) −0.008 (3)
C10 0.108 (4) 0.073 (3) 0.087 (3) −0.002 (3) 0.052 (3) 0.003 (3)
F1 0.117 (2) 0.083 (2) 0.095 (2) 0.0062 (18) 0.0505 (19) −0.0158 (16)
F2 0.140 (3) 0.077 (2) 0.0896 (19) −0.0017 (18) 0.063 (2) 0.0035 (15)
F3 0.186 (4) 0.101 (3) 0.089 (2) −0.008 (2) 0.071 (2) −0.0216 (18)
F4 0.159 (3) 0.083 (2) 0.117 (2) −0.014 (2) 0.082 (2) 0.0027 (18)
C11 0.141 (6) 0.110 (5) 0.108 (5) −0.026 (5) 0.032 (5) 0.017 (4)
C12 0.148 (6) 0.108 (5) 0.110 (5) −0.025 (5) 0.060 (5) −0.015 (4)
O3 0.130 (4) 0.097 (3) 0.125 (3) −0.013 (3) 0.074 (3) −0.024 (3)
C13 0.119 (5) 0.115 (6) 0.140 (6) −0.013 (5) 0.069 (5) −0.044 (5)
C14 0.082 (4) 0.116 (6) 0.143 (6) −0.004 (4) 0.033 (4) −0.063 (5)
O4 0.088 (2) 0.092 (3) 0.114 (3) 0.005 (2) 0.036 (2) −0.037 (2)
C15 0.072 (3) 0.077 (3) 0.069 (3) 0.014 (3) 0.023 (3) −0.014 (3)
C16 0.075 (3) 0.067 (3) 0.073 (3) 0.016 (3) 0.016 (3) 0.003 (2)
C17 0.073 (3) 0.074 (3) 0.074 (3) 0.007 (3) −0.001 (3) 0.002 (3)
C18 0.096 (4) 0.055 (3) 0.069 (3) −0.002 (3) 0.032 (3) 0.003 (2)
C19 0.104 (4) 0.081 (4) 0.050 (3) 0.032 (3) 0.024 (3) 0.010 (2)
C20 0.093 (4) 0.102 (4) 0.052 (3) 0.023 (3) 0.015 (3) 0.001 (3)
F5 0.094 (2) 0.083 (2) 0.117 (2) 0.0325 (18) 0.0105 (19) 0.0145 (18)
F6 0.104 (3) 0.132 (3) 0.101 (2) 0.015 (2) −0.025 (2) −0.005 (2)
F7 0.160 (3) 0.084 (2) 0.083 (2) 0.053 (2) 0.029 (2) 0.0157 (17)
F8 0.121 (3) 0.149 (3) 0.0694 (19) 0.049 (3) −0.0226 (19) −0.019 (2)
C21 0.090 (4) 0.081 (4) 0.105 (4) −0.014 (3) 0.028 (3) 0.000 (3)
C22 0.084 (4) 0.087 (4) 0.105 (4) −0.017 (3) 0.023 (3) −0.004 (3)
O5 0.085 (2) 0.081 (2) 0.086 (2) −0.011 (2) 0.012 (2) −0.003 (2)
C23 0.099 (4) 0.085 (4) 0.109 (5) −0.004 (4) −0.003 (4) −0.004 (4)
C24 0.141 (6) 0.099 (5) 0.081 (4) −0.006 (4) 0.012 (4) −0.002 (3)
O6 0.128 (3) 0.081 (3) 0.071 (2) −0.012 (2) −0.003 (2) −0.004 (2)
C25 0.098 (4) 0.075 (3) 0.063 (3) 0.011 (3) 0.011 (3) 0.012 (3)
C26 0.097 (4) 0.105 (5) 0.101 (4) 0.008 (4) 0.024 (4) −0.026 (4)
C27 0.092 (4) 0.108 (5) 0.103 (4) −0.002 (4) 0.039 (4) 0.010 (4)
C28 0.086 (4) 0.104 (5) 0.097 (4) 0.017 (3) 0.038 (3) 0.032 (4)
C29 0.239 (10) 0.095 (5) 0.156 (7) −0.008 (6) 0.134 (7) 0.005 (5)
C30 0.227 (9) 0.092 (5) 0.130 (6) −0.015 (5) 0.111 (6) 0.000 (4)
F9 0.154 (4) 0.111 (3) 0.182 (4) 0.007 (3) 0.071 (3) −0.038 (3)
F10 0.168 (4) 0.166 (4) 0.137 (3) −0.011 (3) 0.101 (3) −0.012 (3)
F11 0.340 (8) 0.074 (3) 0.262 (6) 0.025 (4) 0.219 (6) 0.008 (3)
F12 0.381 (8) 0.111 (3) 0.203 (4) −0.021 (4) 0.230 (6) −0.012 (3)

Geometric parameters (Å, º)

I1—C8 2.105 (4) C12—H12B 0.9700
I2—C18 2.106 (5) O3—C13 1.395 (8)
I3—C28 2.124 (6) C13—C14 1.445 (10)
K1—O3 2.707 (4) C13—H13A 0.9700
K1—O1 2.744 (3) C13—H13B 0.9700
K1—O5 2.756 (4) C14—O4 1.509 (8)
K1—O4 2.809 (4) C14—H14A 0.9700
K1—O2 2.849 (3) C14—H14B 0.9700
K1—N1 2.903 (4) O4—C15 1.349 (6)
K1—O6 2.911 (4) C15—C16 1.344 (7)
K1—F4 3.041 (4) C15—C20 1.375 (7)
N1—C21 1.438 (7) C16—F5 1.360 (6)
N1—C11 1.443 (8) C16—C17 1.375 (7)
N1—C1 1.472 (8) C17—F6 1.328 (6)
C1—C2 1.470 (9) C17—C18 1.347 (7)
C1—H1A 0.9700 C18—C19 1.374 (7)
C1—H1B 0.9700 C19—F7 1.337 (6)
C2—O1 1.409 (6) C19—C20 1.373 (8)
C2—H2A 0.9700 C20—F8 1.346 (6)
C2—H2B 0.9700 C21—C22 1.481 (8)
O1—C3 1.408 (7) C21—H21A 0.9700
C3—C4 1.474 (7) C21—H21B 0.9700
C3—H3A 0.9700 C22—O5 1.396 (7)
C3—H3B 0.9700 C22—H22A 0.9700
C4—O2 1.464 (6) C22—H22B 0.9700
C4—H4A 0.9700 O5—C23 1.383 (7)
C4—H4B 0.9700 C23—C24 1.468 (9)
O2—C5 1.368 (6) C23—H23A 0.9700
C5—C6 1.374 (7) C23—H23B 0.9700
C5—C10 1.398 (7) C24—O6 1.440 (7)
C6—F1 1.341 (5) C24—H24A 0.9700
C6—C7 1.375 (7) C24—H24B 0.9700
C7—F2 1.320 (6) O6—C25 1.346 (6)
C7—C8 1.390 (7) C25—C30 1.326 (9)
C8—C9 1.385 (7) C25—C26 1.371 (8)
C9—C10 1.319 (7) C26—F9 1.342 (7)
C9—F3 1.342 (6) C26—C27 1.394 (9)
C10—F4 1.352 (6) C27—C28 1.318 (9)
C11—C12 1.482 (10) C27—F10 1.379 (7)
C11—H11A 0.9700 C28—C29 1.334 (8)
C11—H11B 0.9700 C29—F11 1.289 (8)
C12—O3 1.415 (8) C29—C30 1.443 (10)
C12—H12A 0.9700 C30—F12 1.331 (7)
C21—N1—C11 113.7 (5) O4—C14—H14A 109.3
C21—N1—C1 112.3 (5) C13—C14—H14B 109.3
C11—N1—C1 107.4 (6) O4—C14—H14B 109.3
C2—C1—N1 113.9 (5) H14A—C14—H14B 108.0
C2—C1—H1A 108.8 C15—O4—C14 114.3 (4)
N1—C1—H1A 108.8 C16—C15—O4 122.9 (5)
C2—C1—H1B 108.8 C16—C15—C20 117.0 (5)
N1—C1—H1B 108.8 O4—C15—C20 120.0 (5)
H1A—C1—H1B 107.7 C15—C16—F5 117.0 (5)
O1—C2—C1 109.7 (5) C15—C16—C17 122.1 (5)
O1—C2—H2A 109.7 F5—C16—C17 120.9 (5)
C1—C2—H2A 109.7 F6—C17—C18 121.1 (5)
O1—C2—H2B 109.7 F6—C17—C16 117.9 (5)
C1—C2—H2B 109.7 C18—C17—C16 121.0 (5)
H2A—C2—H2B 108.2 C17—C18—C19 118.2 (5)
C3—O1—C2 112.1 (4) C17—C18—I2 121.8 (4)
O1—C3—C4 109.5 (5) C19—C18—I2 119.7 (4)
O1—C3—H3A 109.8 F7—C19—C20 119.4 (5)
C4—C3—H3A 109.8 F7—C19—C18 120.4 (5)
O1—C3—H3B 109.8 C20—C19—C18 120.2 (5)
C4—C3—H3B 109.8 F8—C20—C19 117.5 (5)
H3A—C3—H3B 108.2 F8—C20—C15 121.0 (5)
O2—C4—C3 108.1 (4) C19—C20—C15 121.5 (5)
O2—C4—H4A 110.1 N1—C21—C22 116.6 (5)
C3—C4—H4A 110.1 N1—C21—H21A 108.2
O2—C4—H4B 110.1 C22—C21—H21A 108.2
C3—C4—H4B 110.1 N1—C21—H21B 108.2
H4A—C4—H4B 108.4 C22—C21—H21B 108.2
C5—O2—C4 115.4 (4) H21A—C21—H21B 107.3
O2—C5—C6 122.0 (4) O5—C22—C21 111.2 (5)
O2—C5—C10 120.8 (4) O5—C22—H22A 109.4
C6—C5—C10 116.8 (5) C21—C22—H22A 109.4
F1—C6—C5 119.4 (5) O5—C22—H22B 109.4
F1—C6—C7 119.2 (4) C21—C22—H22B 109.4
C5—C6—C7 121.4 (5) H22A—C22—H22B 108.0
F2—C7—C6 119.0 (4) C23—O5—C22 113.8 (5)
F2—C7—C8 120.2 (5) O5—C23—C24 112.7 (6)
C6—C7—C8 120.8 (5) O5—C23—H23A 109.0
C9—C8—C7 116.5 (4) C24—C23—H23A 109.0
C9—C8—I1 122.9 (4) O5—C23—H23B 109.0
C7—C8—I1 120.6 (3) C24—C23—H23B 109.0
C10—C9—F3 118.2 (5) H23A—C23—H23B 107.8
C10—C9—C8 122.8 (5) O6—C24—C23 110.5 (5)
F3—C9—C8 119.0 (5) O6—C24—H24A 109.6
C9—C10—F4 122.7 (5) C23—C24—H24A 109.6
C9—C10—C5 121.6 (5) O6—C24—H24B 109.6
F4—C10—C5 115.7 (5) C23—C24—H24B 109.6
N1—C11—C12 115.4 (6) H24A—C24—H24B 108.1
N1—C11—H11A 108.4 C25—O6—C24 118.5 (4)
C12—C11—H11A 108.4 C30—C25—O6 118.5 (5)
N1—C11—H11B 108.4 C30—C25—C26 116.4 (6)
C12—C11—H11B 108.4 O6—C25—C26 125.0 (6)
H11A—C11—H11B 107.5 F9—C26—C25 119.7 (7)
O3—C12—C11 109.2 (6) F9—C26—C27 120.4 (6)
O3—C12—H12A 109.8 C25—C26—C27 119.9 (6)
C11—C12—H12A 109.8 C28—C27—F10 119.8 (6)
O3—C12—H12B 109.8 C28—C27—C26 123.0 (6)
C11—C12—H12B 109.8 F10—C27—C26 117.0 (6)
H12A—C12—H12B 108.3 C27—C28—C29 119.2 (7)
C13—O3—C12 112.0 (5) C27—C28—I3 122.8 (4)
O3—C13—C14 107.6 (6) C29—C28—I3 118.0 (6)
O3—C13—H13A 110.2 F11—C29—C28 124.2 (7)
C14—C13—H13A 110.2 F11—C29—C30 117.9 (6)
O3—C13—H13B 110.2 C28—C29—C30 117.9 (7)
C14—C13—H13B 110.2 C25—C30—F12 122.2 (6)
H13A—C13—H13B 108.5 C25—C30—C29 123.4 (6)
C13—C14—O4 111.5 (6) F12—C30—C29 114.4 (7)
C13—C14—H14A 109.3
C21—N1—C1—C2 −76.9 (6) F6—C17—C18—C19 178.3 (5)
C11—N1—C1—C2 157.3 (6) C16—C17—C18—C19 0.7 (8)
N1—C1—C2—O1 −69.4 (7) F6—C17—C18—I2 4.5 (7)
C1—C2—O1—C3 −176.6 (5) C16—C17—C18—I2 −173.1 (4)
C2—O1—C3—C4 172.1 (5) C17—C18—C19—F7 −178.5 (5)
O1—C3—C4—O2 66.8 (7) I2—C18—C19—F7 −4.5 (6)
C3—C4—O2—C5 177.1 (5) C17—C18—C19—C20 −1.1 (7)
C4—O2—C5—C6 −77.6 (6) I2—C18—C19—C20 172.9 (4)
C4—O2—C5—C10 110.0 (6) F7—C19—C20—F8 −3.1 (7)
O2—C5—C6—F1 5.2 (7) C18—C19—C20—F8 179.5 (4)
C10—C5—C6—F1 177.8 (5) F7—C19—C20—C15 178.4 (5)
O2—C5—C6—C7 −174.2 (5) C18—C19—C20—C15 1.0 (8)
C10—C5—C6—C7 −1.5 (8) C16—C15—C20—F8 −178.9 (5)
F1—C6—C7—F2 1.5 (8) O4—C15—C20—F8 −1.7 (8)
C5—C6—C7—F2 −179.2 (5) C16—C15—C20—C19 −0.4 (8)
F1—C6—C7—C8 −179.5 (4) O4—C15—C20—C19 176.8 (5)
C5—C6—C7—C8 −0.2 (8) C11—N1—C21—C22 −103.3 (6)
F2—C7—C8—C9 −179.9 (5) C1—N1—C21—C22 134.5 (6)
C6—C7—C8—C9 1.2 (8) N1—C21—C22—O5 −55.2 (7)
F2—C7—C8—I1 −1.2 (7) C21—C22—O5—C23 −167.0 (5)
C6—C7—C8—I1 179.8 (4) C22—O5—C23—C24 178.1 (5)
C7—C8—C9—C10 −0.4 (9) O5—C23—C24—O6 60.2 (8)
I1—C8—C9—C10 −179.0 (5) C23—C24—O6—C25 150.9 (6)
C7—C8—C9—F3 179.6 (5) C24—O6—C25—C30 −128.5 (8)
I1—C8—C9—F3 1.0 (8) C24—O6—C25—C26 55.2 (9)
F3—C9—C10—F4 0.8 (9) C30—C25—C26—F9 −179.0 (7)
C8—C9—C10—F4 −179.2 (6) O6—C25—C26—F9 −2.7 (10)
F3—C9—C10—C5 178.6 (6) C30—C25—C26—C27 3.0 (10)
C8—C9—C10—C5 −1.4 (10) O6—C25—C26—C27 179.3 (6)
O2—C5—C10—C9 175.0 (5) F9—C26—C27—C28 175.9 (6)
C6—C5—C10—C9 2.3 (9) C25—C26—C27—C28 −6.1 (11)
O2—C5—C10—F4 −7.0 (8) F9—C26—C27—F10 0.9 (10)
C6—C5—C10—F4 −179.8 (5) C25—C26—C27—F10 178.9 (6)
C21—N1—C11—C12 65.8 (7) F10—C27—C28—C29 179.2 (7)
C1—N1—C11—C12 −169.3 (6) C26—C27—C28—C29 4.3 (12)
N1—C11—C12—O3 52.8 (8) F10—C27—C28—I3 −1.9 (9)
C11—C12—O3—C13 164.5 (6) C26—C27—C28—I3 −176.8 (5)
C12—O3—C13—C14 153.4 (6) C27—C28—C29—F11 177.7 (9)
O3—C13—C14—O4 58.0 (7) I3—C28—C29—F11 −1.2 (14)
C13—C14—O4—C15 87.5 (6) C27—C28—C29—C30 0.1 (13)
C14—O4—C15—C16 −101.9 (6) I3—C28—C29—C30 −178.8 (7)
C14—O4—C15—C20 81.1 (7) O6—C25—C30—F12 5.3 (13)
O4—C15—C16—F5 4.4 (7) C26—C25—C30—F12 −178.2 (8)
C20—C15—C16—F5 −178.5 (4) O6—C25—C30—C29 −175.2 (8)
O4—C15—C16—C17 −177.0 (5) C26—C25—C30—C29 1.4 (13)
C20—C15—C16—C17 0.1 (8) F11—C29—C30—C25 179.2 (9)
C15—C16—C17—F6 −177.8 (5) C28—C29—C30—C25 −3.1 (15)
F5—C16—C17—F6 0.6 (7) F11—C29—C30—F12 −1.2 (14)
C15—C16—C17—C18 −0.2 (8) C28—C29—C30—F12 176.5 (9)
F5—C16—C17—C18 178.2 (5)

Table A. I···I- XBs and short F···F contacts (Å and °). For the sake of comparison, a Cambridge Structural Database (Allen, 2002) search for C—I···I- contacts gives 109 hits with a mean I···I- distance of 3.53 (3) Å, the lower and higher quartiles being 3.43 and 3.63 Å, respectively.

C—X···Y X···Y C-X···Y
C8—I1···I4 3.4106 (6) 179.30 (13)
C8—I2···I4i 3.4157 (6) 168.45 (13)
C8—I3···I4ii 3.9437 (7) 179.21 (18)

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z+1.

Table B. Short contacts in receptor–metal cation system for KI and NaI adducts.

K+ Na+
N1 2.903 (4) 2.515 (15)
O1 2.744 (3) 2.388 (12)
O2 2.849 (3) 2.716 (12)
O3 2.707 (4) 2.463 (13)
O4 2.809 (4) 2.424 (12)
O5 2.756 (4) 2.371 (14)
O6 2.911 (4) 4.39 (2)
F4 3.041 (4) 3.124 (17)

In the NaI adduct, Na+···F4 and Na+···O6 distances cannot be considered as bond lengths, thus they are only reported for sake of comparison.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2473).

References

  1. Abate, A., Biella, S., Cavallo, G., Meyer, F., Neukirch, H., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2009). J. Fluorine Chem. 130, 1171–1177.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Bruker (1998). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Mele, A., Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). J. Am. Chem. Soc. 127, 14972–14973. [DOI] [PubMed]
  8. Sheldrick, G. M. (2012). SHELXL2012 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813010532/pk2473sup1.cif

e-69-0m284-sup1.cif (37.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010532/pk2473Isup2.hkl

e-69-0m284-Isup2.hkl (397.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES