Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Aug;86(2):575–584. doi: 10.1172/JCI114747

Evidence for altered epicardial coronary artery autoregulation as a cause of distal coronary vasoconstriction after successful percutaneous transluminal coronary angioplasty.

T A Fischell 1, K N Bausback 1, T V McDonald 1
PMCID: PMC296763  PMID: 2384604

Abstract

To determine whether vasoconstriction distal to the site of successful percutaneous transluminal coronary angioplasty (PTCA) is a result of altered autoregulation in a hypoperfused coronary artery, we examined the association of this distal vasoconstriction with lesion severity in 20 patients. Lesion severity was classified as moderate, severe or critical (greater than 1.0, 0.5-1.0, and less than 0.5 mm, respectively). Quantitative coronary measurements were made at 3, 15, and 30 min after PTCA, and then after intracoronary (IC) nitroglycerin, in coronary segments distal to the dilated lesion (distal) and in a nonmanipulated vessel (control). Coronary vasoconstriction in the Distal segment after PTCA correlated with lesion severity, with 14 +/- 4%, 28 +/- 2%, and 41 +/- 5% vasoconstriction (vs. IC nitroglycerin, 30 min after PTCA) in the moderate, severe and critical lesion severity subgroups, respectively (P less than 0.01 for critical or severe vs. moderate). This vasoconstriction was significantly greater than that observed in the corresponding control segment for patients with severe (P less than 0.01), and critical (P less than 0.001) lesions. These findings suggest that hypoperfused human epicardial coronary arteries "reset" their autoregulatory responsiveness and that distal vasoconstriction after PTCA is the result of this altered autoregulation. These findings have clinical implications concerning the etiology, prophylaxis and treatment of coronary spams after PTCA and coronary bypass surgery.

Full text

PDF
575

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates E. R., Aueron F. M., Legrand V., LeFree M. T., Mancini G. B., Hodgson J. M., Vogel R. A. Comparative long-term effects of coronary artery bypass graft surgery and percutaneous transluminal coronary angioplasty on regional coronary flow reserve. Circulation. 1985 Oct;72(4):833–839. doi: 10.1161/01.cir.72.4.833. [DOI] [PubMed] [Google Scholar]
  2. Bayliss W. M. On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 1902 May 28;28(3):220–231. doi: 10.1113/jphysiol.1902.sp000911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bevan J. A. Vascular myogenic or stretch-dependent tone. J Cardiovasc Pharmacol. 1985;7 (Suppl 3):S129–S136. doi: 10.1097/00005344-198500073-00015. [DOI] [PubMed] [Google Scholar]
  4. Brown B. G., Bolson E. L., Dodge H. T. Dynamic mechanisms in human coronary stenosis. Circulation. 1984 Dec;70(6):917–922. doi: 10.1161/01.cir.70.6.917. [DOI] [PubMed] [Google Scholar]
  5. Bulkely B. H., Hutchins G. M. Myocardial consequences of coronary artery bypass graft surgery. The paradox of necrosis in areas of revascularization. Circulation. 1977 Dec;56(6):906–913. doi: 10.1161/01.cir.56.6.906. [DOI] [PubMed] [Google Scholar]
  6. Cox D. A., Vita J. A., Treasure C. B., Fish R. D., Alexander R. W., Ganz P., Selwyn A. P. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation. 1989 Sep;80(3):458–465. doi: 10.1161/01.cir.80.3.458. [DOI] [PubMed] [Google Scholar]
  7. Ellis S. G., Roubin G. S., King S. B., 3rd, Douglas J. S., Jr, Weintraub W. S., Thomas R. G., Cox W. R. Angiographic and clinical predictors of acute closure after native vessel coronary angioplasty. Circulation. 1988 Feb;77(2):372–379. doi: 10.1161/01.cir.77.2.372. [DOI] [PubMed] [Google Scholar]
  8. Fischell T. A., Derby G., Tse T. M., Stadius M. L. Coronary artery vasoconstriction routinely occurs after percutaneous transluminal coronary angioplasty. A quantitative arteriographic analysis. Circulation. 1988 Dec;78(6):1323–1334. doi: 10.1161/01.cir.78.6.1323. [DOI] [PubMed] [Google Scholar]
  9. Fischell T. A., McDonald T. V., Grattan M. T., Miller D. C., Stadius M. L. Occlusive coronary-artery spasm as a cause of acute myocardial infarction after coronary-artery bypass grafting. N Engl J Med. 1989 Feb 9;320(6):400–401. doi: 10.1056/NEJM198902093200617. [DOI] [PubMed] [Google Scholar]
  10. Fischell T. A., Nellessen U., Johnson D. E., Ginsburg R. Endothelium-dependent arterial vasoconstriction after balloon angioplasty. Circulation. 1989 Apr;79(4):899–910. doi: 10.1161/01.cir.79.4.899. [DOI] [PubMed] [Google Scholar]
  11. Fujita M., Sasayama S., Asanoi H., Nakajima H., Sakai O., Ohno A. Improvement of treadmill capacity and collateral circulation as a result of exercise with heparin pretreatment in patients with effort angina. Circulation. 1988 May;77(5):1022–1029. doi: 10.1161/01.cir.77.5.1022. [DOI] [PubMed] [Google Scholar]
  12. Ganz W., Tamura K., Marcus H. S., Donoso R., Yoshida S., Swan H. J. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation. 1971 Aug;44(2):181–195. doi: 10.1161/01.cir.44.2.181. [DOI] [PubMed] [Google Scholar]
  13. Gillespie M. N., Owasoyo J. O., McMurtry I. F., O'Brien R. F. Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J Pharmacol Exp Ther. 1986 Feb;236(2):339–343. [PubMed] [Google Scholar]
  14. Harder D. R. Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res. 1987 Jan;60(1):102–107. doi: 10.1161/01.res.60.1.102. [DOI] [PubMed] [Google Scholar]
  15. Hickey K. A., Rubanyi G., Paul R. J., Highsmith R. F. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol. 1985 May;248(5 Pt 1):C550–C556. doi: 10.1152/ajpcell.1985.248.5.C550. [DOI] [PubMed] [Google Scholar]
  16. Hintze T. H., Vatner S. F. Reactive dilation of large coronary arteries in conscious dogs. Circ Res. 1984 Jan;54(1):50–57. doi: 10.1161/01.res.54.1.50. [DOI] [PubMed] [Google Scholar]
  17. Hodgson J. M., Cohen M. D., Szentpetery S., Thames M. D. Effects of regional alpha- and beta-blockade on resting and hyperemic coronary blood flow in conscious, unstressed humans. Circulation. 1989 Apr;79(4):797–809. doi: 10.1161/01.cir.79.4.797. [DOI] [PubMed] [Google Scholar]
  18. Hodgson J. M., Riley R. S., Most A. S., Williams D. O. Assessment of coronary flow reserve using digital angiography before and after successful percutaneous transluminal coronary angioplasty. Am J Cardiol. 1987 Jul 1;60(1):61–65. doi: 10.1016/0002-9149(87)90985-4. [DOI] [PubMed] [Google Scholar]
  19. Inoue T., Tomoike H., Hisano K., Nakamura M. Endothelium determines flow-dependent dilation of the epicardial coronary artery in dogs. J Am Coll Cardiol. 1988 Jan;11(1):187–191. doi: 10.1016/0735-1097(88)90188-x. [DOI] [PubMed] [Google Scholar]
  20. Ischinger T., Gruentzig A. R., Meier B., Galan K. Coronary dissection and total coronary occlusion associated with percutaneous transluminal coronary angioplasty: significance of initial angiographic morphology of coronary stenoses. Circulation. 1986 Dec;74(6):1371–1378. doi: 10.1161/01.cir.74.6.1371. [DOI] [PubMed] [Google Scholar]
  21. KOCH A. R. SOME MATHEMATICAL FORMS OF AUTOREGULATORY MODELS. Circ Res. 1964 Aug;15:SUPPL–SUPPL:278. [PubMed] [Google Scholar]
  22. Katusic Z. S., Shepherd J. T., Vanhoutte P. M. Endothelium-dependent contraction to stretch in canine basilar arteries. Am J Physiol. 1987 Mar;252(3 Pt 2):H671–H673. doi: 10.1152/ajpheart.1987.252.3.H671. [DOI] [PubMed] [Google Scholar]
  23. Lam J. Y., Chesebro J. H., Fuster V. Platelets, vasoconstriction, and nitroglycerin during arterial wall injury. A new antithrombotic role for an old drug. Circulation. 1988 Sep;78(3):712–716. doi: 10.1161/01.cir.78.3.712. [DOI] [PubMed] [Google Scholar]
  24. Lam J. Y., Chesebro J. H., Steele P. M., Badimon L., Fuster V. Is vasospasm related to platelet deposition? Relationship in a porcine preparation of arterial injury in vivo. Circulation. 1987 Jan;75(1):243–248. doi: 10.1161/01.cir.75.1.243. [DOI] [PubMed] [Google Scholar]
  25. Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
  26. Lemmer J. H., Jr, Kirsh M. M. Coronary artery spasm following coronary artery surgery. Ann Thorac Surg. 1988 Jul;46(1):108–115. doi: 10.1016/s0003-4975(10)65869-9. [DOI] [PubMed] [Google Scholar]
  27. Lyon R. T., Zarins C. K., Lu C. T., Yang C. F., Glagov S. Vessel, plaque, and lumen morphology after transluminal balloon angioplasty. Quantitative study in distended human arteries. Arteriosclerosis. 1987 May-Jun;7(3):306–314. doi: 10.1161/01.atv.7.3.306. [DOI] [PubMed] [Google Scholar]
  28. McMahon M. M., Brown B. G., Cukingnan R., Rolett E. L., Bolson E., Frimer M., Dodge H. T. Quantitative coronary angiography: measurement of the "critical" stenosis in patients with unstable angina and single-vessel disease without collaterals. Circulation. 1979 Jul;60(1):106–113. doi: 10.1161/01.cir.60.1.106. [DOI] [PubMed] [Google Scholar]
  29. Nichols A. B., Smith R., Berke A. D., Shlofmitz R. A., Powers E. R. Importance of balloon size in coronary angioplasty. J Am Coll Cardiol. 1989 Apr;13(5):1094–1100. doi: 10.1016/0735-1097(89)90267-2. [DOI] [PubMed] [Google Scholar]
  30. Peterson M. B., Machaj V., Block P. C., Palacios I., Philbin D., Watkins W. D. Thromboxane release during percutaneous transluminal coronary angioplasty. Am Heart J. 1986 Jan;111(1):1–6. doi: 10.1016/0002-8703(86)90544-2. [DOI] [PubMed] [Google Scholar]
  31. Rentrop K. P., Cohen M., Blanke H., Phillips R. A. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol. 1985 Mar;5(3):587–592. doi: 10.1016/s0735-1097(85)80380-6. [DOI] [PubMed] [Google Scholar]
  32. Sanborn T. A., Faxon D. P., Haudenschild C., Gottsman S. B., Ryan T. J. The mechanism of transluminal angioplasty: evidence for formation of aneurysms in experimental atherosclerosis. Circulation. 1983 Nov;68(5):1136–1140. doi: 10.1161/01.cir.68.5.1136. [DOI] [PubMed] [Google Scholar]
  33. Sasaguri T., Itoh T., Hirata M., Kitamura K., Kuriyama H. Regulation of coronary artery tone in relation to the activation of signal transductors that regulate calcium homeostasis. J Am Coll Cardiol. 1987 May;9(5):1167–1175. doi: 10.1016/s0735-1097(87)80322-4. [DOI] [PubMed] [Google Scholar]
  34. Serruys P. W., Wijns W., Reiber J. H., de Feyter P., van den Brand M., Piscione F., Hugenholtz P. G. Values and limitations of transstenotic pressure gradients measured during percutaneous coronary angioplasty. Herz. 1985 Dec;10(6):337–342. [PubMed] [Google Scholar]
  35. Vanhoutte P. M. Endothelium-dependent contractions in arteries and veins. Blood Vessels. 1987;24(3):141–144. doi: 10.1159/000158688. [DOI] [PubMed] [Google Scholar]
  36. Wilson R. F., Johnson M. R., Marcus M. L., Aylward P. E., Skorton D. J., Collins S., White C. W. The effect of coronary angioplasty on coronary flow reserve. Circulation. 1988 Apr;77(4):873–885. doi: 10.1161/01.cir.77.4.873. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES