Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 May 1;102(5):1778–1786. doi: 10.1083/jcb.102.5.1778

Monoclonal antibodies that recognize a polypeptide antigenic determinant shared by multiple Caenorhabditis elegans sperm-specific proteins

PMCID: PMC2114204  PMID: 2422180

Abstract

Four monoclonal antibodies that are directed against antigens present in sperm and absent from other worm tissues were characterized. Antibody TR20 is directed against the major sperm proteins, a family of small, abundant, cytoplasmic proteins that have been previously described (Klass, M. R., and D. Hirsh, 1981, Dev. Biol., 84:299-312; Burke, D. J., and S. Ward, 1983, J. Mol. Biol., 171:1-29). Three other antibodies, SP56, SP150, and TR11, are all directed against the same set of minor sperm polypeptides that range in size from 29 to 215 kD. More than eight different sperm polypeptides are antigenic by both immunotransfer and immunoprecipitation assays. The three antibodies are different immunoglobulin subclasses, yet they compete with each other for antigen binding so they are directed against the same antigenic determinant on the multiple sperm proteins. This antigenic determinant is sensitive to any of six different proteases, is insensitive to periodate oxidation or N-glycanase digestion, and is detectable on a polypeptide synthesized in vitro. Therefore, the antigenic determinant resides in the polypeptide chain. However, peptide fragments of the proteins are not antigenic, thus the determinant is likely to be dependent on polypeptide conformation. The antigenic determinant shared by these proteins could represent a common structural feature of importance to the localization or cellular specificity of these proteins.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argon Y., Ward S. Caenorhabditis elegans fertilization-defective mutants with abnormal sperm. Genetics. 1980 Oct;96(2):413–433. doi: 10.1093/genetics/96.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benjamin D. C., Berzofsky J. A., East I. J., Gurd F. R., Hannum C., Leach S. J., Margoliash E., Michael J. G., Miller A., Prager E. M. The antigenic structure of proteins: a reappraisal. Annu Rev Immunol. 1984;2:67–101. doi: 10.1146/annurev.iy.02.040184.000435. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burke D. J., Ward S. Identification of a large multigene family encoding the major sperm protein of Caenorhabditis elegans. J Mol Biol. 1983 Nov 25;171(1):1–29. doi: 10.1016/s0022-2836(83)80312-x. [DOI] [PubMed] [Google Scholar]
  5. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  6. Dales S., Fujinami R. S., Oldstone M. B. Serologic relatedness between Thy-1.2 and actin revealed by monoclonal antibody. J Immunol. 1983 Sep;131(3):1332–1338. [PubMed] [Google Scholar]
  7. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  8. Fambrough D. M., Bayne E. K. Multiple forms of (Na+ + K+)-ATPase in the chicken. Selective detection of the major nerve, skeletal muscle, and kidney form by a monoclonal antibody. J Biol Chem. 1983 Mar 25;258(6):3926–3935. [PubMed] [Google Scholar]
  9. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 1985 Mar 7;314(6006):53–57. doi: 10.1038/314053a0. [DOI] [PubMed] [Google Scholar]
  10. Fujinami R. S., Oldstone M. B., Wroblewska Z., Frankel M. E., Koprowski H. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2346–2350. doi: 10.1073/pnas.80.8.2346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haspel M. V., Onodera T., Prabhakar B. S., McClintock P. R., Essani K., Ray U. R., Yagihashi S., Notkins A. L. Multiple organ-reactive monoclonal autoantibodies. Nature. 1983 Jul 7;304(5921):73–76. doi: 10.1038/304073a0. [DOI] [PubMed] [Google Scholar]
  12. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffman S., Sorkin B. C., White P. C., Brackenbury R., Mailhammer R., Rutishauser U., Cunningham B. A., Edelman G. M. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem. 1982 Jul 10;257(13):7720–7729. [PubMed] [Google Scholar]
  14. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
  15. Klass M. R., Kinsley S., Lopez L. C. Isolation and characterization of a sperm-specific gene family in the nematode Caenorhabditis elegans. Mol Cell Biol. 1984 Mar;4(3):529–537. doi: 10.1128/mcb.4.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klass M., Dow B., Herndon M. Cell-specific transcriptional regulation of the major sperm protein in Caenorhabditis elegans. Dev Biol. 1982 Sep;93(1):152–164. doi: 10.1016/0012-1606(82)90249-4. [DOI] [PubMed] [Google Scholar]
  17. Knecht D. A., Dimond R. L., Wheeler S., Loomis W. F. Antigenic determinants shared by lysosomal proteins of Dictyostelium discoideum. Characterization using monoclonal antibodies and isolation of mutations affecting the determinant. J Biol Chem. 1984 Aug 25;259(16):10633–10640. [PubMed] [Google Scholar]
  18. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  19. Lane D., Koprowski H. Molecular recognition and the future of monoclonal antibodies. Nature. 1982 Mar 18;296(5854):200–202. doi: 10.1038/296200a0. [DOI] [PubMed] [Google Scholar]
  20. Lemke H., Hammerling G. J., Hohmann C., Rajewsky K. Hybrid cell lines secreting monoclonal antibody specific for major histocompatibility antigens of the mouse. Nature. 1978 Jan 19;271(5642):249–251. doi: 10.1038/271249a0. [DOI] [PubMed] [Google Scholar]
  21. Lingappa V. R., Shields D., Woo S. L., Blobel G. Nascent chicken ovalbumin contains the functional equivalent of a signal sequence. J Cell Biol. 1978 Nov;79(2 Pt 1):567–572. doi: 10.1083/jcb.79.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Markwell M. A., Fox C. F. Surface-specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3alpha,6alpha-diphenylglycoluril. Biochemistry. 1978 Oct 31;17(22):4807–4817. doi: 10.1021/bi00615a031. [DOI] [PubMed] [Google Scholar]
  23. Milstein C., Lennox E. The use of monoclonal antibody techniques in the study of development cell surfaces. Curr Top Dev Biol. 1980;14(Pt 2):1–32. doi: 10.1016/s0070-2153(08)60187-8. [DOI] [PubMed] [Google Scholar]
  24. Murray B. A., Niman H. L., Loomis W. F. Monoclonal antibody recognizing gp80, a membrane glycoprotein implicated in intercellular adhesion of Dictyostelium discoideum. Mol Cell Biol. 1983 May;3(5):863–870. doi: 10.1128/mcb.3.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nelson G. A., Lew K. K., Ward S. Intersex, a temperature-sensitive mutant of the nematode Caenorhabditis elegans. Dev Biol. 1978 Oct;66(2):386–409. doi: 10.1016/0012-1606(78)90247-6. [DOI] [PubMed] [Google Scholar]
  26. Nelson G. A., Roberts T. M., Ward S. Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin. J Cell Biol. 1982 Jan;92(1):121–131. doi: 10.1083/jcb.92.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Palmiter R. D. Prevention of NH2-terminal acetylation of proteins synthesized in cell-free systems. J Biol Chem. 1977 Dec 25;252(24):8781–8783. [PubMed] [Google Scholar]
  28. Plummer T. H., Jr, Elder J. H., Alexander S., Phelan A. W., Tarentino A. L. Demonstration of peptide:N-glycosidase F activity in endo-beta-N-acetylglucosaminidase F preparations. J Biol Chem. 1984 Sep 10;259(17):10700–10704. [PubMed] [Google Scholar]
  29. Randall R. E., Newman C., Honess R. W. Isolation and characterization of monoclonal antibodies to structural and nonstructural herpesvirus saimiri proteins. J Virol. 1984 Dec;52(3):872–883. doi: 10.1128/jvi.52.3.872-883.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roberts T. M., Pavalko F. M., Ward S. Membrane and cytoplasmic proteins are transported in the same organelle complex during nematode spermatogenesis. J Cell Biol. 1986 May;102(5):1787–1796. doi: 10.1083/jcb.102.5.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roberts T. M., Streitmatter G. Membrane-substrate contact under the spermatozoon of Caenorhabditis elegans, a crawling cell that lacks filamentous actin. J Cell Sci. 1984 Jul;69:117–126. doi: 10.1242/jcs.69.1.117. [DOI] [PubMed] [Google Scholar]
  32. Roberts T. M., Ward S. Centripetal flow of pseudopodial surface components could propel the amoeboid movement of Caenorhabditis elegans spermatozoa. J Cell Biol. 1982 Jan;92(1):132–138. doi: 10.1083/jcb.92.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roberts T. M., Ward S. Membrane flow during nematode spermiogenesis. J Cell Biol. 1982 Jan;92(1):113–120. doi: 10.1083/jcb.92.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roux K. H., Gilman-Sachs A., Dray S. The identification of a VH subgroup allotypic specificity, y30, which differentiates the y33 allele into two variants. Implications for rabbit VH gene organization and evolution. Mol Immunol. 1981 May;18(5):359–365. doi: 10.1016/0161-5890(81)90096-1. [DOI] [PubMed] [Google Scholar]
  35. Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
  36. Swanstrom R., Shank P. R. X-Ray Intensifying Screens Greatly Enhance the Detection by Autoradiography of the Radioactive Isotopes 32P and 125I. Anal Biochem. 1978 May;86(1):184–192. doi: 10.1016/0003-2697(78)90333-0. [DOI] [PubMed] [Google Scholar]
  37. Tainer J. A., Getzoff E. D., Alexander H., Houghten R. A., Olson A. J., Lerner R. A., Hendrickson W. A. The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature. 1984 Nov 8;312(5990):127–134. doi: 10.1038/312127a0. [DOI] [PubMed] [Google Scholar]
  38. Vanderslice R., Hirsh D. Temperature-sensitive zygote defective mutants of Caenorhabditis elegans. Dev Biol. 1976 Mar;49(1):236–249. doi: 10.1016/0012-1606(76)90269-4. [DOI] [PubMed] [Google Scholar]
  39. Ward S., Argon Y., Nelson G. A. Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J Cell Biol. 1981 Oct;91(1):26–44. doi: 10.1083/jcb.91.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ward S., Hogan E., Nelson G. A. The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev Biol. 1983 Jul;98(1):70–79. doi: 10.1016/0012-1606(83)90336-6. [DOI] [PubMed] [Google Scholar]
  41. Ward S., Klass M. The location of the major protein in Caenorhabditis elegans sperm and spermatocytes. Dev Biol. 1982 Jul;92(1):203–208. doi: 10.1016/0012-1606(82)90164-6. [DOI] [PubMed] [Google Scholar]
  42. Ward S., Miwa J. Characterization of temperature-sensitive, fertilization-defective mutants of the nematode caenorhabditis elegans. Genetics. 1978 Feb;88(2):285–303. doi: 10.1093/genetics/88.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Westhof E., Altschuh D., Moras D., Bloomer A. C., Mondragon A., Klug A., Van Regenmortel M. H. Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature. 1984 Sep 13;311(5982):123–126. doi: 10.1038/311123a0. [DOI] [PubMed] [Google Scholar]
  44. Wilson I. A., Niman H. L., Houghten R. A., Cherenson A. R., Connolly M. L., Lerner R. A. The structure of an antigenic determinant in a protein. Cell. 1984 Jul;37(3):767–778. doi: 10.1016/0092-8674(84)90412-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES