Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 12;69(Pt 11):o1635. doi: 10.1107/S1600536813027426

N′-[(E)-3-Bromo­benzyl­idene]pyrazine-2-carbohydrazide

Mushtaq Ahmad a,b, Shahid Hameed a, M Nawaz Tahir c,*, Muhammad Anwar d, Muhammad Israr d
PMCID: PMC3884304  PMID: 24454080

Abstract

In the title compound, C12H9BrN4O, the dihedral angle between the aromatic rings is 12.16 (12)°. An intra­molecular N—H⋯N hydrogen bond closes an S(5) ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into C(6) chains propagating in [010]. Very weak aromatic π–π stacking [centroid–centroid separations = 3.9189 (15) and 3.9357 (15) Å] is also observed.

Related literature  

For related structures, see: Hameed et al. (2013a ,b ).graphic file with name e-69-o1635-scheme1.jpg

Experimental  

Crystal data  

  • C12H9BrN4O

  • M r = 305.14

  • Monoclinic, Inline graphic

  • a = 14.4115 (8) Å

  • b = 6.2128 (3) Å

  • c = 27.5992 (15) Å

  • β = 104.379 (2)°

  • V = 2393.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 296 K

  • 0.34 × 0.25 × 0.23 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.389, T max = 0.506

  • 9373 measured reflections

  • 2415 independent reflections

  • 1670 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.075

  • S = 1.02

  • 2415 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813027426/hb7147sup1.cif

e-69-o1635-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027426/hb7147Isup2.hkl

e-69-o1635-Isup2.hkl (132.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027426/hb7147Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2 0.86 2.24 2.646 (3) 109
C6—H6⋯O1i 0.93 2.26 3.150 (3) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors are also thankful to the Higher Education Commission (HEC) of Pakistan for financial support. M. Ahmad is thankful to the Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories of Pakistan for financial support throughout his study leave.

supplementary crystallographic information

1. Comment

The title compound (I), (Fig. 1) has been prepared in continuation of synthesizing different compounds containing pyrazine-2-carbohydrazide moiety (Hameed et al., 2013a, 2013b).

In (I) the parts A (C1–C5/N1—N4/O1) and B (C6—C12/Br1) of pyrazine-2-carbohydrazide and 3-bromobenzaldehyde moieties are close to planar with r.m. s. deviations of 0.0259 Å and 0.0149 Å, respectively. The dihedral angle between A/B is 13.950 (54)°. There exist intramolecular H-bondings of N—H····N type (Table 1, Fig. 2) forming S(5) ring motif. Molecules are linked due to H-bonding of C—H····O type (Table 1, Fig. 2) forming C (6) chains. There exist π–π interactions at a distance of 3.9190 Å [Cg1—Cg2i & Cg2—Cg1i: i = 1/2 - x, 1/2 - y, -z] and 3.9356 Å [Cg1—Cg2ii & Cg2—Cg1ii: ii = 1 - x, 1 - y, -z], between the centroids of Cg1 (C1/C2/N1/C3/C4/N2) and Cg2 (C7—C12), respectively.

2. Experimental

The title compound was synthesized by the condensation of equimolar ratio of pyrazine-2-carbohydrazide with 3-bromobenzaldehyde, both dissolved in methanol. The resulting reaction mixture was stirred well and then refluxed for 5 h and allowed to cool over night. The precipitated solid was filtered, washed with petroleum ether and recrystallized from chloroform in pet ether and dried under reduced pressure over CaCl2 giving white crystalline compound. The crystals were re-grown in the same solvent system for crystallographic studies, yielding colourless prisms (m.p. 475–476 K).

3. Refinement

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, showing that molecules form polymeric chains.

Crystal data

C12H9BrN4O F(000) = 1216
Mr = 305.14 Dx = 1.693 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 14.4115 (8) Å Cell parameters from 1670 reflections
b = 6.2128 (3) Å θ = 1.5–26.3°
c = 27.5992 (15) Å µ = 3.43 mm1
β = 104.379 (2)° T = 296 K
V = 2393.7 (2) Å3 Prism, colorless
Z = 8 0.34 × 0.25 × 0.23 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2415 independent reflections
Radiation source: fine-focus sealed tube 1670 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 8.00 pixels mm-1 θmax = 26.3°, θmin = 1.5°
ω scans h = −17→17
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −5→7
Tmin = 0.389, Tmax = 0.506 l = −34→34
9373 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.0725P] where P = (Fo2 + 2Fc2)/3
2415 reflections (Δ/σ)max = 0.001
163 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.62227 (2) 0.43755 (5) 0.23030 (2) 0.07124 (14)
O1 0.34544 (12) 0.8178 (3) −0.01354 (6) 0.0572 (5)
N1 0.15137 (16) 0.8142 (4) −0.15404 (8) 0.0650 (6)
N2 0.23320 (14) 0.4402 (3) −0.10560 (7) 0.0489 (5)
N3 0.35102 (14) 0.4532 (3) −0.01526 (7) 0.0501 (5)
H3A 0.3313 0.3401 −0.0328 0.060*
N4 0.41296 (14) 0.4300 (3) 0.03159 (7) 0.0470 (5)
C1 0.25220 (16) 0.6348 (4) −0.08500 (8) 0.0421 (5)
C2 0.21160 (18) 0.8185 (5) −0.10872 (9) 0.0565 (7)
H2 0.2266 0.9502 −0.0927 0.068*
C3 0.13278 (19) 0.6199 (5) −0.17444 (10) 0.0620 (8)
H3 0.0911 0.6087 −0.2060 0.074*
C4 0.17254 (18) 0.4358 (5) −0.15084 (9) 0.0567 (7)
H4 0.1568 0.3041 −0.1668 0.068*
C5 0.32089 (16) 0.6472 (4) −0.03412 (8) 0.0432 (6)
C6 0.43789 (17) 0.2363 (4) 0.04277 (8) 0.0488 (6)
H6 0.4144 0.1287 0.0195 0.059*
C7 0.50180 (16) 0.1759 (4) 0.09064 (8) 0.0429 (5)
C8 0.52751 (15) 0.3190 (4) 0.13043 (8) 0.0441 (6)
H8 0.5043 0.4593 0.1274 0.053*
C9 0.58834 (16) 0.2486 (4) 0.17454 (8) 0.0457 (6)
C10 0.62372 (18) 0.0415 (4) 0.17990 (10) 0.0557 (7)
H10 0.6649 −0.0027 0.2098 0.067*
C11 0.59711 (19) −0.0986 (4) 0.14028 (11) 0.0599 (7)
H11 0.6210 −0.2383 0.1434 0.072*
C12 0.53564 (19) −0.0348 (4) 0.09608 (10) 0.0538 (6)
H12 0.5167 −0.1322 0.0699 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0841 (2) 0.0729 (2) 0.04238 (16) −0.00330 (16) −0.01146 (13) −0.00346 (13)
O1 0.0665 (11) 0.0511 (11) 0.0501 (10) −0.0134 (9) 0.0073 (8) −0.0144 (8)
N1 0.0630 (15) 0.0746 (17) 0.0523 (13) 0.0077 (13) 0.0045 (11) 0.0107 (12)
N2 0.0511 (11) 0.0532 (13) 0.0392 (10) −0.0028 (11) 0.0048 (9) −0.0096 (10)
N3 0.0553 (12) 0.0501 (13) 0.0367 (10) −0.0022 (11) −0.0042 (9) −0.0109 (9)
N4 0.0491 (11) 0.0522 (13) 0.0345 (9) −0.0025 (10) 0.0004 (8) −0.0063 (9)
C1 0.0402 (13) 0.0502 (15) 0.0365 (11) −0.0016 (11) 0.0110 (10) −0.0043 (10)
C2 0.0604 (16) 0.0557 (17) 0.0519 (14) 0.0006 (14) 0.0110 (12) −0.0003 (13)
C3 0.0508 (16) 0.089 (2) 0.0411 (13) −0.0007 (15) 0.0011 (12) 0.0039 (14)
C4 0.0538 (15) 0.0694 (19) 0.0416 (13) −0.0048 (14) 0.0018 (11) −0.0103 (13)
C5 0.0432 (13) 0.0496 (15) 0.0375 (12) −0.0041 (12) 0.0113 (10) −0.0053 (11)
C6 0.0544 (15) 0.0505 (16) 0.0385 (12) −0.0080 (13) 0.0058 (10) −0.0083 (11)
C7 0.0425 (13) 0.0453 (15) 0.0408 (12) −0.0035 (11) 0.0102 (10) −0.0001 (10)
C8 0.0458 (13) 0.0422 (14) 0.0412 (12) −0.0002 (11) 0.0048 (10) 0.0016 (11)
C9 0.0432 (13) 0.0499 (15) 0.0418 (12) −0.0046 (12) 0.0064 (10) 0.0019 (11)
C10 0.0482 (14) 0.0611 (18) 0.0537 (15) 0.0025 (13) 0.0049 (11) 0.0138 (13)
C11 0.0620 (17) 0.0510 (17) 0.0680 (17) 0.0106 (13) 0.0183 (14) 0.0095 (13)
C12 0.0620 (16) 0.0472 (15) 0.0547 (15) 0.0002 (13) 0.0195 (13) −0.0038 (12)

Geometric parameters (Å, º)

Br1—C9 1.901 (2) C3—H3 0.9300
O1—C5 1.213 (3) C4—H4 0.9300
N1—C3 1.331 (4) C6—C7 1.459 (3)
N1—C2 1.334 (3) C6—H6 0.9300
N2—C4 1.335 (3) C7—C8 1.390 (3)
N2—C1 1.335 (3) C7—C12 1.392 (4)
N3—C5 1.341 (3) C8—C9 1.383 (3)
N3—N4 1.384 (2) C8—H8 0.9300
N3—H3A 0.8600 C9—C10 1.378 (4)
N4—C6 1.272 (3) C10—C11 1.376 (4)
C1—C2 1.372 (3) C10—H10 0.9300
C1—C5 1.506 (3) C11—C12 1.376 (4)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.369 (4) C12—H12 0.9300
C3—N1—C2 115.5 (2) N4—C6—C7 122.6 (2)
C4—N2—C1 115.7 (2) N4—C6—H6 118.7
C5—N3—N4 121.85 (19) C7—C6—H6 118.7
C5—N3—H3A 119.1 C8—C7—C12 119.9 (2)
N4—N3—H3A 119.1 C8—C7—C6 122.4 (2)
C6—N4—N3 113.77 (18) C12—C7—C6 117.7 (2)
N2—C1—C2 122.1 (2) C9—C8—C7 118.7 (2)
N2—C1—C5 117.5 (2) C9—C8—H8 120.7
C2—C1—C5 120.4 (2) C7—C8—H8 120.7
N1—C2—C1 122.1 (3) C10—C9—C8 121.8 (2)
N1—C2—H2 118.9 C10—C9—Br1 118.40 (18)
C1—C2—H2 118.9 C8—C9—Br1 119.78 (19)
N1—C3—C4 122.7 (2) C11—C10—C9 118.9 (2)
N1—C3—H3 118.7 C11—C10—H10 120.6
C4—C3—H3 118.7 C9—C10—H10 120.6
N2—C4—C3 121.8 (3) C10—C11—C12 120.9 (2)
N2—C4—H4 119.1 C10—C11—H11 119.6
C3—C4—H4 119.1 C12—C11—H11 119.6
O1—C5—N3 125.1 (2) C11—C12—C7 119.9 (2)
O1—C5—C1 121.9 (2) C11—C12—H12 120.1
N3—C5—C1 113.0 (2) C7—C12—H12 120.1
C5—N3—N4—C6 −176.9 (2) C2—C1—C5—N3 177.4 (2)
C4—N2—C1—C2 0.3 (4) N3—N4—C6—C7 −179.2 (2)
C4—N2—C1—C5 −179.6 (2) N4—C6—C7—C8 10.8 (4)
C3—N1—C2—C1 0.5 (4) N4—C6—C7—C12 −170.6 (2)
N2—C1—C2—N1 −0.7 (4) C12—C7—C8—C9 1.3 (3)
C5—C1—C2—N1 179.2 (2) C6—C7—C8—C9 179.9 (2)
C2—N1—C3—C4 −0.1 (4) C7—C8—C9—C10 0.0 (4)
C1—N2—C4—C3 0.1 (4) C7—C8—C9—Br1 −178.32 (17)
N1—C3—C4—N2 −0.3 (4) C8—C9—C10—C11 −0.4 (4)
N4—N3—C5—O1 1.9 (4) Br1—C9—C10—C11 177.9 (2)
N4—N3—C5—C1 −178.7 (2) C9—C10—C11—C12 −0.5 (4)
N2—C1—C5—O1 176.8 (2) C10—C11—C12—C7 1.8 (4)
C2—C1—C5—O1 −3.1 (4) C8—C7—C12—C11 −2.3 (4)
N2—C1—C5—N3 −2.7 (3) C6—C7—C12—C11 179.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N2 0.86 2.24 2.646 (3) 109
C6—H6···O1i 0.93 2.26 3.150 (3) 160

Symmetry code: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7147).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Hameed, S., Ahmad, M., Tahir, M. N., Israr, M. & Anwar, M. (2013a). Acta Cryst. E69, o1419. [DOI] [PMC free article] [PubMed]
  5. Hameed, S., Ahmad, M., Tahir, M. N., Shah, M. A. & Shad, H. A. (2013b). Acta Cryst. E69, o1141. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813027426/hb7147sup1.cif

e-69-o1635-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027426/hb7147Isup2.hkl

e-69-o1635-Isup2.hkl (132.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027426/hb7147Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES