Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Dec;393:29–42. doi: 10.1113/jphysiol.1987.sp016808

[3H]noradrenaline release from rabbit pulmonary artery: sodium-pump-dependent sodium-calcium exchange.

K Magyar 1, T T Nguyen 1, T L Török 1, P T Tóth 1
PMCID: PMC1192378  PMID: 2451738

Abstract

1. The release of [3H]noradrenaline ([3H]NA) from the isolated main pulmonary artery of the rabbit has been measured in the presence of neuronal (cocaine, 3 X 10(-5) M) and extraneuronal (corticosterone, 5 X 10(-5) M) uptake blockers. 2. K+ removal from the external medium increased the release of [3H]NA, an action transiently inhibited by Ca2+-free (+1 mM-EGTA) solution, i.e. after Ca2+ removal transmitter release was first abolished and then started to increase again after a delay lasting about 90-120 min. 3. Ca2+ readmission to arteries which had been kept in Ca2+- and 'K+-free' solution, markedly increased the [3H]NA release. The rate of transmitter release was dependent on the preceding perfusion period with 'K+-free' solution, being greater for longer exposure times. 4. When Ca2+ and K+ were readmitted together to K+-depleted and Na+-enriched preparations, the release of [3H]NA transiently increased. 5. If K+ was readmitted first, the subsequently applied Ca2+ was ineffective in producing transmitter release. 6. Different alkali metal ions (Rb+, Cs+ or Li+) were also readmitted as K+ substitutes together with Ca2+. In all cases the release of neurotransmitter transiently increased; however, the rate of release was dependent on the monovalent cation used. Thus, Rb+ ions were as effective as, Cs+ about one-third as effective as, and Li+ about one-fifth as effective as K+ in activating the Na+ pump. 7. It is concluded that in the absence of external Ca2+, and in response to Na+-pump inhibition, the release of Ca2+ from internal stores is responsible for the NA release observed. On readmission of Ca2+ the rate of transmitter release is dependent on the Na+ previously gained inside. Furthermore, the activity of the Na+ pump determines the rate of transmitter release through the Na-Ca exchange mechanism.

Full text

PDF
29

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Allen T. J. The voltage-sensitivity of Na-Ca exchange in the squid axon. Prog Clin Biol Res. 1984;168:89–94. [PubMed] [Google Scholar]
  2. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F., Blaustein M. P., Keynes R. D., Manil J., Shaw T. I., Steinhardt R. A. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J Physiol. 1969 Feb;200(2):459–496. doi: 10.1113/jphysiol.1969.sp008703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Connelly C. M. Some properties of the external activation site of the sodium pump in crab nerve. J Physiol. 1966 Jul;185(2):270–297. doi: 10.1113/jphysiol.1966.sp007987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker P. F., Crawford A. C. A note of the mechanism by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals. J Physiol. 1975 May;247(1):209–226. doi: 10.1113/jphysiol.1975.sp010928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baker P. F., Schlaepfer W. W. Uptake and binding of calcium by axoplasm isolated from giant axons of Loligo and Myxicola. J Physiol. 1978 Mar;276:103–125. doi: 10.1113/jphysiol.1978.sp012222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baker P. F. The regulation of intracellular calcium in giant axons of Loligo and Myxicola. Ann N Y Acad Sci. 1978 Apr 28;307:250–268. doi: 10.1111/j.1749-6632.1978.tb41956.x. [DOI] [PubMed] [Google Scholar]
  8. Baker P. F. The sodium pump. Endeavour. 1966 Sep;25(96):166–172. doi: 10.1016/0160-9327(66)90124-4. [DOI] [PubMed] [Google Scholar]
  9. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  10. Blaustein M. P., Ratzlaff R. W., Kendrick N. C., Schweitzer E. S. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J Gen Physiol. 1978 Jul;72(1):15–41. doi: 10.1085/jgp.72.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Blaustein M. P., Ratzlaff R. W., Schweitzer E. S. Control of intracellular calcium in presynaptic nerve terminals. Fed Proc. 1980 Aug;39(10):2790–2795. [PubMed] [Google Scholar]
  12. Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Borowski E., Starke K., Ehrl H., Endo T. A comparison of pre- and postsynaptic effects of alpha-adrenolytic drugs in the pulmonary artery of the rabbit. Neuroscience. 1977;2(2):285–296. doi: 10.1016/0306-4522(77)90095-1. [DOI] [PubMed] [Google Scholar]
  14. Brinley F. J., Jr Regulation of intracellular calcium in squid axons. Fed Proc. 1980 Aug;39(10):2778–2782. [PubMed] [Google Scholar]
  15. Cooke J. D., Okamoto K., Quastel D. M. The role of calcium in depolarization-secretion coupling at the motor nerve terminal. J Physiol. 1973 Jan;228(2):459–497. doi: 10.1113/jphysiol.1973.sp010095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dipolo R. Effect of ATP on the calcium efflux in dialyzed squid giant axons. J Gen Physiol. 1974 Oct;64(4):503–517. doi: 10.1085/jgp.64.4.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Elmqvist D., Feldman D. S. Effects of sodium pump inhibitors on spontaneous acetylcholine release at the neuromuscular junction. J Physiol. 1965 Dec;181(3):498–505. doi: 10.1113/jphysiol.1965.sp007778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Endo T., Starke K., Bangerter A., Taube H. D. Presynaptic receptor systems on the noradrenergic neurones of the rabbit pulmonary artery. Naunyn Schmiedebergs Arch Pharmacol. 1977 Feb;296(3):229–247. doi: 10.1007/BF00498689. [DOI] [PubMed] [Google Scholar]
  19. Gorman A. L., Marmor M. F. Long-term effect of ouabain and sodium pump inhibition on a neuronal membrane. J Physiol. 1974 Oct;242(1):49–60. doi: 10.1113/jphysiol.1974.sp010693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hubbard J. I., Willis W. D. The effects of depolarization of motor nerve terminals upon the release of transmitter by nerve impulses. J Physiol. 1968 Feb;194(2):381–405. doi: 10.1113/jphysiol.1968.sp008414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Landau E. M. The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian motor nerve terminals. J Physiol. 1969 Aug;203(2):281–299. doi: 10.1113/jphysiol.1969.sp008864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lev-Tov A., Rahamimoff R. A study of tetanic and post-tetanic potentiation of miniature end-plate potentials at the frog neuromuscular junction. J Physiol. 1980 Dec;309:247–273. doi: 10.1113/jphysiol.1980.sp013507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Magyar K., Nguyen T. T., Török T. L., Tóth P. T. The action of excess potassium and calcium on ouabain-evoked [3H]-noradrenaline release from the rabbit pulmonary artery. Br J Pharmacol. 1986 Jan;87(1):63–71. doi: 10.1111/j.1476-5381.1986.tb10157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McGraw C. F., Somlyo A. V., Blaustein M. P. Probing for calcium at presynaptic nerve terminals. Fed Proc. 1980 Aug;39(10):2796–2801. [PubMed] [Google Scholar]
  25. Miledi R., Thies R. Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions. J Physiol. 1971 Jan;212(1):245–257. doi: 10.1113/jphysiol.1971.sp009320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miledi R. Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc Lond B Biol Sci. 1973 Jul 3;183(1073):421–425. doi: 10.1098/rspb.1973.0026. [DOI] [PubMed] [Google Scholar]
  27. Mullins L. J. A mechanism for Na/Ca transport. J Gen Physiol. 1977 Dec;70(6):681–695. doi: 10.1085/jgp.70.6.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakazato Y., Ohga A., Onoda Y. The effect of ouabain on noradrenaline output from peripheral adrenergic neurones of isolated guinea-pig vas deferens. J Physiol. 1978 May;278:45–54. doi: 10.1113/jphysiol.1978.sp012291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Powis D. A. Cardiac glycosides and autonomic neurotransmission. J Auton Pharmacol. 1983 Jun;3(2):127–154. doi: 10.1111/j.1474-8673.1983.tb00528.x. [DOI] [PubMed] [Google Scholar]
  30. Rang H. P., Ritchie J. M. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol. 1968 May;196(1):183–221. doi: 10.1113/jphysiol.1968.sp008502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Starke K., Montel H., Gayk W., Merker R. Comparison of the effects of clonidine on pre- and postsynaptic adrenoceptors in the rabbit pulmonary artery. Alpha-sympathomimetic inhibition of Neurogenic vasoconstriction. Naunyn Schmiedebergs Arch Pharmacol. 1974;285(2):133–150. doi: 10.1007/BF00501149. [DOI] [PubMed] [Google Scholar]
  32. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  33. Török T. L., Magyar K. Ouabain-evoked [3H]noradrenaline release from the rabbit pulmonary artery in calcium-free solution. Q J Exp Physiol. 1986 Jan;71(1):105–114. doi: 10.1113/expphysiol.1986.sp002961. [DOI] [PubMed] [Google Scholar]
  34. Török T. L., Salamon Z., Nguyen T. T., Magyar K. Spontaneous [3H]noradrenaline release from the main pulmonary artery of the rabbit induced by sodium-pump inhibition. Q J Exp Physiol. 1984 Oct;69(4):841–865. doi: 10.1113/expphysiol.1984.sp002873. [DOI] [PubMed] [Google Scholar]
  35. Vizi E. S. Termination of transmitter release by stimulation of sodium-potassium activated ATPase. J Physiol. 1977 May;267(2):261–280. doi: 10.1113/jphysiol.1977.sp011812. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES