Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;10(1):77–93. doi: 10.1016/0168-1702(88)90059-7

Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus

Isabel Correa 1, Gustavo Jiménez 1, Carlos Suñé 1, María J Bullido 1, Luis Enjuanes 1,
PMCID: PMC7134057  PMID: 2453977

Abstract

The antigenic structure of transmissible gastroenteritis (TGE) virus E2 glycoprotein has been defined at three levels: antigenic sites, antigenic subsites and epitopes. Four antigenic sites (A, B, C and D) were defined by competitive radioimmunoassay (RIA) using monoclonal antibodies (MAbs) selected from 9 fusions. About 20% (197) of the hybridomas specific for TGE virus produced neutralizing MAbs specific for site A, which was one of the antigenically dominant determinants. Site A was differentiated in three antigenic subsites: a, b and c, by characterization of 11 MAb resistant (mar) mutants, that were defined by 8, 3, and 3 MAbs, respectively. These subsites were further subdivided in epitopes. A total of 11 epitopes were defined in E2 glycoprotein, eight of which were critical for virus neutralization. Neutralizing MAbs were obtained only when native virus was used to immunize mice, although to produce hybridomas mice immunizations were made with antigen in the native, denatured, or mixtures of native and denatured form. All neutralizing MAbs reacted to conformational epitopes. The antigenic structure of the E2-glycoprotein has been defined with murine MAbs, but the antigenic sites were relevant in the swine, the natural host of the virus, because porcine sera reacted against these sites. MAbs specific for TGE virus site C reacted to non-immune porcine sera. This reactivity was not directed against porcine immunoglobulins. These results indicated that TGE virus contains epitope(s) also present in some non-immunoglobulin component of porcine serum.

Keywords: TGE virus, Antigenic structure

References

  1. Bohl E.H. Transmissible gastroenteritis. In: Dunne H.W., Leman A.D., editors. Diseases of swine. Iowa State University Press; Ames, Iowa: 1975. pp. 168–208. [Google Scholar]
  2. Brian D.A., Dennis D.E., Guy J.S. Genome of porcine transmissible gastroenteritis virus. J. Virol. 1980;34:410–415. doi: 10.1128/jvi.34.2.410-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986;67:1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
  4. Deschamps J.R., Hildreth J.E.K., Derp D., August J.T. A high-performance liquid Chromatographic procedure for the purification of mouse monoclonal antibodies. Anal. Biochem. 1985;147:451–454. doi: 10.1016/0003-2697(85)90296-9. [DOI] [PubMed] [Google Scholar]
  5. Enjuanes L., Correa I., Jiménez G., Melgosa M.P., Bullido M.J. Critical epitopes in transmissible gastroenteritis virus neutralization. In: Lai M.M.C., Stholman S.A., editors. Coronavirus. Plenum Press; New York: 1987. pp. 351–363. [Google Scholar]
  6. Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978–1979;3:179–190. [Google Scholar]
  7. Greenwod F.C., Hunger W.M., Glover J.W. The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem. J. 1963;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal. Biochem. 1982;119:142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
  9. Hu S., Bruszewski J., Boone T., Souza L. Cloning and expression of the surface glycoprotein gp 195 of porcine transmissible gastroenteritis virus. In: Chanock R.M., Lerner R.A., editors. Modem Approaches to Vaccines. Cold Spring Harbor Laboratory; New York: 1984. pp. 219–223. [Google Scholar]
  10. Jackson D.C., Murray J.M., White D.O., Gerhard W.U. Enumeration of antigenic sites of influenza virus hemagglutinin. Infect. Immun. 1982;37:912–918. doi: 10.1128/iai.37.3.912-918.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jiménez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virology. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kearny J.F., Radbruck A., Liesegang B., Rajewsky K. A new mouse myeloma line which has lost immunoglobulin expression but permits the construction of antibody secreting hybrid cell lines. J. Immunol. 1979;123:1548–1550. [PubMed] [Google Scholar]
  14. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. McClurkin A.W., Norman J.O. Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can. J. Comp. Vet. Sci. 1966;30:190–198. [PMC free article] [PubMed] [Google Scholar]
  16. Moxley R.A., Olson L.D. Abstr. Proc. Int. Pig Vet. Soc. 9th Congress. 1986. p. 191. [Google Scholar]
  17. Niman H.L., Elder J.H. Structural analysis of Rauscher virus gp 70 using monoclonal antibodies: sites of antigenicity and p15(E) linkage. Virology. 1982;123:187–205. doi: 10.1016/0042-6822(82)90305-1. [DOI] [PubMed] [Google Scholar]
  18. Oldstone M.B.A. Virus-induced immune complex formation and disease: definition, regulation, importance. In: Notkins A.L., Oldstone M.B.A., editors. Concepts in Viral Pathogenesis. Springer-Verlag; New York: 1984. pp. 201–209. [Google Scholar]
  19. Sanz A., García-Barreno B., Nogal M.L., Viñuela E., Enjuanes L. Monoclonal antibodies specific for African Swine fever virus proteins. J. Virol. 1985;54:199–206. doi: 10.1128/jvi.54.1.199-206.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Seif I., Coulon P., Rollin P.E., Flamand A. Rabies virulence: effect of pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J. Virol. 1985;53:926–934. doi: 10.1128/jvi.53.3.926-934.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Siddell S., Wege H., Ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  22. Stone M.R., Nowinski R.C. Topological mapping of murine leukemia virus proteins by competition binding assay with monoclonal antibodies. Virology. 1980;100:370–381. doi: 10.1016/0042-6822(80)90528-0. [DOI] [PubMed] [Google Scholar]
  23. Sturman L.S., Holmes K. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Towbin H., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from gels to nitrocellulose sheets: procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vandepol S., Lefrancois L., Holland J.J. Sequences of the major antibody binding epitopes of the Indiana serotype of vesicular stomatitis virus. Virology. 1986;148:312–325. doi: 10.1016/0042-6822(86)90328-4. [DOI] [PubMed] [Google Scholar]
  26. Van-Wyke Coelingh K.L., Winter C.C., Jorgensen E.D., Murphy B.R. Antigenic and structural properties of the hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type 3: sequence analysis of variants selected with monoclonal antibodies which inhibit infectivity, hemagglutination, and neuroaminidase activities. J. Virol. 1987;61:1473–1477. doi: 10.1128/jvi.61.5.1473-1477.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wesley R.D., Woods R.D. Identification of a 17,000 molecular weight antigenic polypeptide in transmissible gastroenteritis virus-infected cells. J. Gen. Virol. 1976;67:1419–1425. doi: 10.1099/0022-1317-67-7-1419. [DOI] [PubMed] [Google Scholar]
  28. Yewdell J.W., Caton A.J., Gerhard W. Selection of influenza A virus adsorptive mutants by growth in the presence of a mixture of monoclonal antihemagglutinin antibodies. J. Virol. 1986;57:623–628. doi: 10.1128/jvi.57.2.623-628.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES