Abstract
A7r5 smooth muscle (aorta) cells have a spontaneous electrical activity. Application of vasopressin produces a hyperpolarization accompanied by an interruption of the spontaneous activity, which is followed by a depolarization associated with a recovery of the spiking activity. Vasopressin action is produced by an action of the peptide on three different types of ionic channels. Vasopressin activates a Ca2+-sensitive K+ conductance, presumably by producing inositol 1,4,5-trisphosphate intracellularly and liberating Ca2+ from internal stores. This activation is transient (0.5-4 min) and is related to the vasopressin-induced hyperpolarization. Intracellular perfusion of inositol trisphosphate triggers by itself a transient K+ current and prevents subsequent activation by vasopressin. Vasopressin inhibits an L-type Ca2+ channel through both protein kinase C activation and a [Ca2+]i-dependent inactivation mechanism triggered by inositol trisphosphate production. The addition of the activation of a Ca2+-sensitive K+ channel and of the inhibition of a voltage-sensitive Ca2+ channel is responsible for the transient blockade of the spontaneous activity. Vasopressin also provokes the activation of an inward current (2-20 min) due to a nonselective channel able to transfer Ca2+, Na+, K+, and Cs+ across the membrane. This effect of the peptide is associated with the depolarization following the hyperpolarization phase.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altura B. M., Altura B. T. Vascular smooth muscle and neurohypophyseal hormones. Fed Proc. 1977 May;36(6):1853–1860. [PubMed] [Google Scholar]
- Benham C. D., Bolton T. B., Lang R. J., Takewaki T. The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ -channels in arterial and intestinal smooth muscle cell membranes. Pflugers Arch. 1985 Feb;403(2):120–127. doi: 10.1007/BF00584088. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
- Boulanger-Saunier C., Stoclet J. C. A 16 kDa protein substrate for protein kinase C and its phosphorylation upon stimulation of vasopressin receptors in rat aortic myocytes. Biochem Biophys Res Commun. 1987 Mar 13;143(2):517–524. doi: 10.1016/0006-291x(87)91384-2. [DOI] [PubMed] [Google Scholar]
- Doyle V. M., Rüegg U. T. Vasopressin induced production of inositol trisphosphate and calcium efflux in a smooth muscle cell line. Biochem Biophys Res Commun. 1985 Aug 30;131(1):469–476. doi: 10.1016/0006-291x(85)91826-1. [DOI] [PubMed] [Google Scholar]
- Fish R. D., Sperti G., Colucci W. S., Clapham D. E. Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. Circ Res. 1988 May;62(5):1049–1054. doi: 10.1161/01.res.62.5.1049. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Higashida H., Brown D. A. Two polyphosphatidylinositide metabolites control two K+ currents in a neuronal cell. 1986 Sep 25-Oct 1Nature. 323(6086):333–335. doi: 10.1038/323333a0. [DOI] [PubMed] [Google Scholar]
- Hugues M., Romey G., Duval D., Vincent J. P., Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1308–1312. doi: 10.1073/pnas.79.4.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue R., Okabe K., Kitamura K., Kuriyama H. A newly identified Ca2+ dependent K+ channel in the smooth muscle membrane of single cells dispersed from the rabbit portal vein. Pflugers Arch. 1986 Feb;406(2):138–143. doi: 10.1007/BF00586674. [DOI] [PubMed] [Google Scholar]
- Kimes B. W., Brandt B. L. Characterization of two putative smooth muscle cell lines from rat thoracic aorta. Exp Cell Res. 1976 Mar 15;98(2):349–366. doi: 10.1016/0014-4827(76)90446-8. [DOI] [PubMed] [Google Scholar]
- Miller C., Moczydlowski E., Latorre R., Phillips M. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature. 1985 Jan 24;313(6000):316–318. doi: 10.1038/313316a0. [DOI] [PubMed] [Google Scholar]
- Penit J., Faure M., Jard S. Vasopressin and angiotensin II receptors in rat aortic smooth muscle cells in culture. Am J Physiol. 1983 Jan;244(1):E72–E82. doi: 10.1152/ajpendo.1983.244.1.E72. [DOI] [PubMed] [Google Scholar]
- Rasmussen H., Takuwa Y., Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB J. 1987 Sep;1(3):177–185. [PubMed] [Google Scholar]
- Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature. 1983 Feb 17;301(5901):569–574. doi: 10.1038/301569a0. [DOI] [PubMed] [Google Scholar]
- Singer J. J., Walsh J. V., Jr Characterization of calcium-activated potassium channels in single smooth muscle cells using the patch-clamp technique. Pflugers Arch. 1987 Feb;408(2):98–111. doi: 10.1007/BF00581337. [DOI] [PubMed] [Google Scholar]
- Sperelakis N. Hormonal and neurotransmitter regulation of Ca++ influx through voltage-dependent slow channels in cardiac muscle membrane. Membr Biochem. 1984;5(2):131–166. doi: 10.3109/09687688409150275. [DOI] [PubMed] [Google Scholar]
- Tertoolen L. G., Tilly B. C., Irvine R. F., Moolenaar W. H. Electrophysiological responses to bradykinin and microinjected inositol polyphosphates in neuroblastoma cells. Possible role of inositol 1,3,4-trisphosphate in altering membrane potential. FEBS Lett. 1987 Apr 20;214(2):365–369. doi: 10.1016/0014-5793(87)80089-3. [DOI] [PubMed] [Google Scholar]
- Vigne P., Breittmayer J. P., Duval D., Frelin C., Lazdunski M. The Na+/Ca2+ antiporter in aortic smooth muscle cells. Characterization and demonstration of an activation by phorbol esters. J Biol Chem. 1988 Jun 15;263(17):8078–8083. [PubMed] [Google Scholar]
- Wallnöfer A., Cauvin C., Rüegg U. T. Vasopressin increases 45Ca2+ influx in rat aortic smooth muscle cells. Biochem Biophys Res Commun. 1987 Oct 14;148(1):273–278. doi: 10.1016/0006-291x(87)91106-5. [DOI] [PubMed] [Google Scholar]

