Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Feb 15;258(1):73–78. doi: 10.1042/bj2580073

Preproenkephalin mRNA expression in developing rat heart and in cultured ventricular cardiac muscle cells.

J P Springhorn 1, W C Claycomb 1
PMCID: PMC1138325  PMID: 2467662

Abstract

Heart muscle tissue has previously been reported to have the highest content of preproenkephalin (ppEnk) mRNA of any tissue in the adult rat. We have determined that it is present in the ventricular cardiac muscle cells of the heart and is developmentally regulated. The expression of ppEnk mRNA was observed to be low throughout the first 2 weeks of postnatal development and decreases substantially during week 3. Expression was again low by week 4, but by adulthood (approx. 3 months), it reached a maximum. ppEnk mRNA was actively expressed in primary cardiac muscle cell cultures prepared from both neonatal and adult rats. Its steady-state content in cell cultures was observed to be increased by cyclic AMP and 3-isobutyl-1-methylxanthine. The phorbol ester phorbol 12-myristate 13-acetate elicited a transient effect (i.e. an increase was observed at 4 h and a return to control values by 24 h). We speculate that enkephalin may play a multi-functional role in the differentiation of neonatal cardiac muscle cells and in the terminally differentiated adult heart cell. We demonstrate that the primary culture systems employed in this study will be useful models with which to explore both transcriptional and translational regulation of ppEnk mRNA in the heart.

Full text

PDF
73

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird R. C., Jacobs F. A., Stein G., Stein J., Sells B. H. Coordinate regulation of histone mRNAs during growth and differentiation of rat myoblasts. Biochim Biophys Acta. 1985 Mar 20;824(3):209–217. doi: 10.1016/0167-4781(85)90050-8. [DOI] [PubMed] [Google Scholar]
  2. Brus R. Adenyl cyclase activity in developing rat heart. Pol J Pharmacol Pharm. 1974 May-Jun;26(3):337–340. [PubMed] [Google Scholar]
  3. Brus R., Hess M. E. Effect of norepinephrine and sodium fluoride on heart adenyl cyclase in newborn and adult rats. Endocrinology. 1973 Oct;93(4):982–985. doi: 10.1210/endo-93-4-982. [DOI] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Claycomb W. C. Biochemical aspects of cardiac muscle differentiation. Deoxyribonucleic acid synthesis and nuclear and cytoplasmic deoxyribonucleic acid polymerase activity. J Biol Chem. 1975 May 10;250(9):3229–3235. [PubMed] [Google Scholar]
  7. Claycomb W. C. Biochemical aspects of cardiac muscle differentiation. Possible control of deoxyribonucleic acid synthesis and cell differentiation by adrenergic innervation and cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1976 Oct 10;251(19):6082–6089. [PubMed] [Google Scholar]
  8. Claycomb W. C. Cardiac muscle cell proliferation and cell differentiation in vivo and in vitro. Adv Exp Med Biol. 1983;161:249–265. doi: 10.1007/978-1-4684-4472-8_14. [DOI] [PubMed] [Google Scholar]
  9. Claycomb W. C. Cardiac-muscle hypertrophy. Differentiation and growth of the heart cell during development. Biochem J. 1977 Dec 15;168(3):599–601. doi: 10.1042/bj1680599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Claycomb W. C. DNA synthesis and DNA enzymes in terminally differentiating cardiac muscle cells. Exp Cell Res. 1979 Jan;118(1):111–114. doi: 10.1016/0014-4827(79)90588-3. [DOI] [PubMed] [Google Scholar]
  11. Claycomb W. C., Lanson N., Jr Isolation and culture of the terminally differentiated adult mammalian ventricular cardiac muscle cell. In Vitro. 1984 Aug;20(8):647–651. doi: 10.1007/BF02619615. [DOI] [PubMed] [Google Scholar]
  12. Claycomb W. C., Palazzo M. C. Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev Biol. 1980 Dec;80(2):466–482. doi: 10.1016/0012-1606(80)90419-4. [DOI] [PubMed] [Google Scholar]
  13. Comb M., Birnberg N. C., Seasholtz A., Herbert E., Goodman H. M. A cyclic AMP- and phorbol ester-inducible DNA element. 1986 Sep 25-Oct 1Nature. 323(6086):353–356. doi: 10.1038/323353a0. [DOI] [PubMed] [Google Scholar]
  14. Deschamps J., Mitchell R. L., Meijlink F., Kruijer W., Schubert D., Verma I. M. Proto-oncogene fos is expressed during development, differentiation, and growth. Cold Spring Harb Symp Quant Biol. 1985;50:733–745. doi: 10.1101/sqb.1985.050.01.091. [DOI] [PubMed] [Google Scholar]
  15. Flórez J., Mediavilla A. Respiratory and cardiovascular effects of met-enkephalin applied to the ventral surface of the brain stem. Brain Res. 1977 Dec 23;138(3):585–900. doi: 10.1016/0006-8993(77)90699-0. [DOI] [PubMed] [Google Scholar]
  16. Hofbauer R., Müllner E., Seiser C., Wintersberger E. Cell cycle regulated synthesis of stable mouse thymidine kinase mRNA is mediated by a sequence within the cDNA. Nucleic Acids Res. 1987 Jan 26;15(2):741–752. doi: 10.1093/nar/15.2.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holaday J. W. Cardiovascular effects of endogenous opiate systems. Annu Rev Pharmacol Toxicol. 1983;23:541–594. doi: 10.1146/annurev.pa.23.040183.002545. [DOI] [PubMed] [Google Scholar]
  18. Hollingsworth E. B., Ukena D., Daly J. W. The protein kinase C activator phorbol-12-myristate-13-acetate enhances cyclic AMP accumulation in pheochromocytoma cells. FEBS Lett. 1986 Feb 3;196(1):131–134. doi: 10.1016/0014-5793(86)80227-7. [DOI] [PubMed] [Google Scholar]
  19. Howells R. D., Kilpatrick D. L., Bailey L. C., Noe M., Udenfriend S. Proenkephalin mRNA in rat heart. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1960–1963. doi: 10.1073/pnas.83.6.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975 Dec 18;258(5536):577–580. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
  21. JAMIESON J. D., PALADE G. E. SPECIFIC GRANULES IN ATRIAL MUSCLE CELLS. J Cell Biol. 1964 Oct;23:151–172. doi: 10.1083/jcb.23.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morkin E., Ashford T. P. Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol. 1968 Dec;215(6):1409–1413. doi: 10.1152/ajplegacy.1968.215.6.1409. [DOI] [PubMed] [Google Scholar]
  23. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  24. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science. 1984 Sep 21;225(4668):1365–1370. doi: 10.1126/science.6147898. [DOI] [PubMed] [Google Scholar]
  25. Novák E., Drummond G. I., Skála J., Hahn P. Developmental changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase in liver, heart, and skeletal muscle of the rat. Arch Biochem Biophys. 1972 Jun;150(2):511–518. doi: 10.1016/0003-9861(72)90069-0. [DOI] [PubMed] [Google Scholar]
  26. Polinger I. S. Separation of cell types in embryonic heart cell cultures. Exp Cell Res. 1970 Nov;63(1):78–82. doi: 10.1016/0014-4827(70)90333-2. [DOI] [PubMed] [Google Scholar]
  27. Sasaki R., Watanabe Y., Morishita T., Yamagata S. Estimation of the cell number of heart muscles in normal rats. Tohoku J Exp Med. 1968 Jun;95(2):177–184. doi: 10.1620/tjem.95.177. [DOI] [PubMed] [Google Scholar]
  28. Sierra F., Lichtler A., Marashi F., Rickles R., Van Dyke T., Clark S., Wells J., Stein G., Stein J. Organization of human histone genes. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1795–1799. doi: 10.1073/pnas.79.6.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sugden D., Vanecek J., Klein D. C., Thomas T. P., Anderson W. B. Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. 1985 Mar 28-Apr 3Nature. 314(6009):359–361. doi: 10.1038/314359a0. [DOI] [PubMed] [Google Scholar]
  30. Yoshikawa K., Williams C., Sabol S. L. Rat brain preproenkephalin mRNA. cDNA cloning, primary structure, and distribution in the central nervous system. J Biol Chem. 1984 Nov 25;259(22):14301–14308. [PubMed] [Google Scholar]
  31. Zagon I. S., Rhodes R. E., McLaughlin P. J. Distribution of enkephalin immunoreactivity in germinative cells of developing rat cerebellum. Science. 1985 Mar 1;227(4690):1049–1051. doi: 10.1126/science.3883485. [DOI] [PubMed] [Google Scholar]
  32. Zagon I. S., Rhodes R. E., McLaughlin P. J. Localization of enkephalin immunoreactivity in diverse tissues and cells of the developing and adult rat. Cell Tissue Res. 1986;246(3):561–565. doi: 10.1007/BF00215197. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES