Abstract
1. The characteristics of N-formyl-methionyl-leucyl-phenylalanine (FMLP)-induced oedema formation were investigated in vivo in rabbit skin. 2. FMLP injected intradermally alone induced a small increase in plasma leakage, but marked synergism with prostaglandin E2 (PGE2) in producing oedema responses was observed. In the presence of PGE2, FMLP was equiactive with C5a des Arg and 100-1000 times more active than histamine in terms of permeability-increasing activity. The response to FMLP was not dependent on endogenous histamine release. 3. FMLP-induced responses were of long duration (t1/2 approximately 40-50 min) when compared with bradykinin (t1/2 approximately 4-5 min). 4. The activity of a range of N-formyl peptides in increasing vascular permeability in skin correlated well with their activity as neutrophil stimulants in vitro. 5. Intravenous infusion of zymosan-activated plasma (ZAP) resulted in transient neutropenia and inhibition of oedema formation induced by FMLP and C5a des Arg in the skin. Responses to bradykinin were unaffected by the infusion of ZAP. 6. Intravenous injection of the non-steroidal antiinflammatory drug, ibuprofen, resulted in an inhibition of FMLP-induced, but not histamine-induced, oedema formation. This effect was independent of cyclo-oxygenase inhibition and the drug did not induced neutropenia. 7. Intravenous injection of the microtubule blocking agent colchicine inhibited FMLP-induced oedema formation. Responses to bradykinin were unaffected. When colchicine was administered after intradermal FMLP, subsequent plasma leakage was abolished. 8. The inference that receptors have evolved to bacterial secretions (i.e. FMLP) and products of the interaction of bacterial cell walls with tissue fluid (i.e. C5a des Arg), is consistent with the hypothesis that oedema formation is fundamentally a functional process concerned with regulating microbial lysis and opsonisation in an infected tissue.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson S., Korchak H., Ludewig R., Edelson H., Haines K., Levin R. I., Herman R., Rider L., Kimmel S., Weissmann G. Modes of action of aspirin-like drugs. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7227–7231. doi: 10.1073/pnas.82.21.7227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carp H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med. 1982 Jan 1;155(1):264–275. doi: 10.1084/jem.155.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang Y. H. Mechanism of action of colchicine. I. Effect of colchicine and its analogs on the reversed passive Arthus reaction and the carrageenan-induced hindpaw edema in the rat. J Pharmacol Exp Ther. 1975 Jul;194(1):154–158. [PubMed] [Google Scholar]
- Colditz I. G., Movat H. Z. Kinetics of neutrophil accumulation in acute inflammatory lesions induced by chemotaxins and chemotaxinigens. J Immunol. 1984 Oct;133(4):2169–2173. [PubMed] [Google Scholar]
- Cunningham F. M., Smith M. J. Leukotriene B4: biological activities and the cytoskeleton. Br J Pharmacol. 1982 Feb;75(2):383–387. doi: 10.1111/j.1476-5381.1982.tb08798.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desai U., Kreutzer D. L., Showell H., Arroyave C. V., Ward P. A. Acute inflammatory pulmonary reactions induced by chemotactic factors. Am J Pathol. 1979 Jul;96(1):71–83. [PMC free article] [PubMed] [Google Scholar]
- Flick M. R., Perel A., Staub N. C. Leukocytes are required for increased lung microvascular permeability after microembolization in sheep. Circ Res. 1981 Mar;48(3):344–351. doi: 10.1161/01.res.48.3.344. [DOI] [PubMed] [Google Scholar]
- Flynn P. J., Becker W. K., Vercellotti G. M., Weisdorf D. J., Craddock P. R., Hammerschmidt D. E., Lillehei R. C., Jacob H. S. Ibuprofen inhibits granulocyte responses to inflammatory mediators. A proposed mechanism for reduction of experimental myocardial infarct size. Inflammation. 1984 Mar;8(1):33–44. doi: 10.1007/BF00918351. [DOI] [PubMed] [Google Scholar]
- Freer R. J., Day A. R., Muthukumaraswamy N., Pinon D., Wu A., Showell H. J., Becker E. L. Formyl peptide chemoattractants: a model of the receptor on rabbit neutrophils. Biochemistry. 1982 Jan 19;21(2):257–263. doi: 10.1021/bi00531a009. [DOI] [PubMed] [Google Scholar]
- Haslett C., Worthen G. S., Giclas P. C., Morrison D. C., Henson J. E., Henson P. M. The pulmonary vascular sequestration of neutrophils in endotoxemia is initiated by an effect of endotoxin on the neutrophil in the rabbit. Am Rev Respir Dis. 1987 Jul;136(1):9–18. doi: 10.1164/ajrccm/136.1.9. [DOI] [PubMed] [Google Scholar]
- Hellewell P. G., Williams T. J. Antagonism of Paf-induced oedema formation in rabbit skin: a comparison of different antagonists. Br J Pharmacol. 1989 May;97(1):171–180. doi: 10.1111/j.1476-5381.1989.tb11939.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgs G. A., Moncada S., Salmon J. A., Seager K. The source of thromboxane and prostaglandins in experimental inflammation. Br J Pharmacol. 1983 Aug;79(4):863–868. doi: 10.1111/j.1476-5381.1983.tb10530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hook W. A., Schiffmann E., Aswanikumar S., Siraganian R. P. Histamine release by chemotactic, formyl methionine-containing peptides. J Immunol. 1976 Aug;117(2):594–596. [PubMed] [Google Scholar]
- Issekutz A. C. Vascular responses during acute neutrophilic inflammation. Their relationship to in vivo neutrophil emigration. Lab Invest. 1981 Nov;45(5):435–441. [PubMed] [Google Scholar]
- Jose P. J., Forrest M. J., Williams T. J. Detection of the complement fragment C5a in inflammatory exudates from the rabbit peritoneal cavity using radioimmunoassay. J Exp Med. 1983 Dec 1;158(6):2177–2182. doi: 10.1084/jem.158.6.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirlin P. C., Romson J. L., Pitt B., Abrams G. D., Schork M. A., Lucchesi B. R. Ibuprofen-mediated infarct size reduction: effects on regional myocardial function in canine myocardial infarction in canine myocardial infarction. Am J Cardiol. 1982 Oct;50(4):849–856. doi: 10.1016/0002-9149(82)91244-9. [DOI] [PubMed] [Google Scholar]
- Lackie J. M. The aggregation of rabbit polymorphonuclear leucocytes: effects of antimitotic agents, cyclic nucleotides and methyl xanthines. J Cell Sci. 1974 Oct;16(1):167–180. doi: 10.1242/jcs.16.1.167. [DOI] [PubMed] [Google Scholar]
- Maderazo E. G., Breaux S. P., Woronick C. L. Inhibition of human polymorphonuclear leukocyte cell responses by ibuprofen. J Pharm Sci. 1984 Oct;73(10):1403–1406. doi: 10.1002/jps.2600731020. [DOI] [PubMed] [Google Scholar]
- Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marasco W. A., Phan S. H., Krutzsch H., Showell H. J., Feltner D. E., Nairn R., Becker E. L., Ward P. A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984 May 10;259(9):5430–5439. [PubMed] [Google Scholar]
- McCall C. E., De Chatelet L. R., Brown D., Lachmann P. New biological activity following intravascular activation of the complement cascade. Nature. 1974 Jun 28;249(460):841–843. doi: 10.1038/249841a0. [DOI] [PubMed] [Google Scholar]
- Nielsen V. G., Webster R. O. Inhibition of human polymorphonuclear leukocyte functions by ibuprofen. Immunopharmacology. 1987 Feb;13(1):61–71. doi: 10.1016/0162-3109(87)90027-0. [DOI] [PubMed] [Google Scholar]
- O'Flaherty J. T., Showell H. J., Ward P. A. Neutropenia induced by systemic infusion of chemotactic factors. J Immunol. 1977 May;118(5):1586–1589. [PubMed] [Google Scholar]
- Rampart M., Williams T. J. Polymorphonuclear leukocyte-dependent plasma leakage in the rabbit skin is enhanced or inhibited by prostacyclin, depending on the route of administration. Am J Pathol. 1986 Jul;124(1):66–73. [PMC free article] [PubMed] [Google Scholar]
- Rampart M., Williams T. J. Suppression of inflammatory oedema by ibuprofen involving a mechanism independent of cyclo-oxygenase inhibition. Biochem Pharmacol. 1986 Feb 15;35(4):581–586. doi: 10.1016/0006-2952(86)90351-5. [DOI] [PubMed] [Google Scholar]
- Schiffmann E., Corcoran B. A., Wahl S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062. doi: 10.1073/pnas.72.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showell H. J., Freer R. J., Zigmond S. H., Schiffmann E., Aswanikumar S., Corcoran B., Becker E. L. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med. 1976 May 1;143(5):1154–1169. doi: 10.1084/jem.143.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmons P. M., Salmon J. A., Moncada S. The release of leukotriene B4 during experimental inflammation. Biochem Pharmacol. 1983 Apr 15;32(8):1353–1359. doi: 10.1016/0006-2952(83)90446-x. [DOI] [PubMed] [Google Scholar]
- Valerius N. H. In vitro effect of colchicine on neutrophil granulocyte locomotion. Assessment of the effect of colchicine on chemotaxis, chemokinesis and spontaneous motility, using a modified reversible Boyden chamber. Acta Pathol Microbiol Scand B. 1978 Jun;86B(3):149–154. [PubMed] [Google Scholar]
- Wedmore C. V., Williams T. J. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature. 1981 Feb 19;289(5799):646–650. doi: 10.1038/289646a0. [DOI] [PubMed] [Google Scholar]
- Williams T. J., Jose P. J. Mediation of increased vascular permeability after complement activation. Histamine-independent action of rabbit C5a. J Exp Med. 1981 Jan 1;153(1):136–153. doi: 10.1084/jem.153.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams T. J., Peck M. J. Role of prostaglandin-mediated vasodilatation in inflammation. Nature. 1977 Dec 8;270(5637):530–532. doi: 10.1038/270530a0. [DOI] [PubMed] [Google Scholar]
