Abstract
The relationship between lipid composition, the physical properties of microsomal phospholipids and the kinetics of liver UDP-glucuronyltransferase was studied in microsomes from guinea pigs supplied with a normal or a fat-free diet for 28 days. Fatty acid deficiency did not modify either the cholesterol/phospholipid molar ratio or the polar head group composition, but exclusively redistributed the unsaturated fatty acid pattern, by partially exchanging oleic for linoleic acid. This phenomenon accounts for the decrease of both rotational and translational mobilities of the fluorescent probes 1,6-diphenyl-1,3,5-hexatriene (DPH) and pyrene respectively. When the thermotropic behaviour of the different systems was assessed, no transition temperature (gel-liquid-crystalline) between 10 and 40 degrees C was seen as a consequence of the lower degree of unsaturation, either in the microsomal membranes or in the total lipid or total phospholipid extracts from the treated animals. In spite of this, the polarization ratio of trans-parinaric acid and the fluorescence intensity of merocyanine 540 revealed that a significant lateral phase separation occurred at 20-22 degrees C in the extracted phospholipids, which was smoother in the total lipid fractions and in the native microsomal membranes. Fatty acid deficiency caused an upward shift of the midpoint temperature of the lateral phase separation. Furthermore, the phosphatidylcholine extracted from the 'normal' microsomes showed a lateral phase separation centred at a lower temperature than that extracted from 'fat-deficient' microsomes. In contrast, the Arrhenius plot of UDP-glucuronyltransferase from 'normal' microsomes exhibited a change in slope at a higher temperature than that from treated microsomes. These results would suggest that fatty acid deficiency in guinea-pig liver microsomes, while rigidizing the bulk lipids, would segregate the most unsaturated phosphatidylcholine molecules towards the UDP-glucuronyltransferase microenvironment, in accordance with our previous results with cholesterol incorporation [Castuma & Brenner (1986) Biochemistry 25, 4733-4738].
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett J. P., Smith G. A., Houslay M. D., Hesketh T. R., Metcalfe J. C., Warren G. B. The phospholipid headgroup specificity of an ATP-dependent calcium pump. Biochim Biophys Acta. 1978 Nov 16;513(3):310–320. doi: 10.1016/0005-2736(78)90201-8. [DOI] [PubMed] [Google Scholar]
- Brasitus T. A. Lipid dynamics and protein-lipid interactions in rat colonic epithelial cell basolateral membranes. Biochim Biophys Acta. 1983 Feb 9;728(1):20–30. doi: 10.1016/0005-2736(83)90432-7. [DOI] [PubMed] [Google Scholar]
- Brenner R. R. Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog Lipid Res. 1984;23(2):69–96. doi: 10.1016/0163-7827(84)90008-0. [DOI] [PubMed] [Google Scholar]
- Brenner R. R., Garda H., de Gómez Dumm I. N., Pezzano H. Early effects of EFA deficiency on the structure and enzymatic activity of rat liver microsomes. Prog Lipid Res. 1981;20:315–321. doi: 10.1016/0163-7827(81)90063-1. [DOI] [PubMed] [Google Scholar]
- Carmel G., Rodrigue F., Carrière S., Le Grimellec C. Composition and physical properties of lipids from plasma membranes of dog kidney. Biochim Biophys Acta. 1985 Aug 27;818(2):149–157. doi: 10.1016/0005-2736(85)90557-7. [DOI] [PubMed] [Google Scholar]
- Castuma C. E., Brenner R. R. Cholesterol-dependent modification of microsomal dynamics and UDPglucuronyltransferase kinetics. Biochemistry. 1986 Aug 26;25(17):4733–4738. doi: 10.1021/bi00365a002. [DOI] [PubMed] [Google Scholar]
- Castuma C. E., Brenner R. R. Effect of fatty acid deficiency on microsomal membrane fluidity and cooperativity of the UDP-glucuronyltransferase. Biochim Biophys Acta. 1983 Mar 23;729(1):9–16. doi: 10.1016/0005-2736(83)90449-2. [DOI] [PubMed] [Google Scholar]
- Cummings J., Graham A. B., Wood G. C. Kinetic studies of latent microsomal UDP-glucuronyltransferases. Kinetics of glucuronidation in intact and perturbant-treated membranes. Biochim Biophys Acta. 1984 Apr 11;771(2):127–141. doi: 10.1016/0005-2736(84)90525-x. [DOI] [PubMed] [Google Scholar]
- East J. M., Lee A. G. Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid. Biochemistry. 1982 Aug 17;21(17):4144–4151. doi: 10.1021/bi00260a035. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Gally H. U., Pluschke G., Overath P., Seelig J. Structure of Escherichia coli membranes. Fatty acyl chain order parameters of inner and outer membranes and derived liposomes. Biochemistry. 1980 Apr 15;19(8):1638–1643. doi: 10.1021/bi00549a018. [DOI] [PubMed] [Google Scholar]
- Garda H. A., Brenner R. R. In vitro modification of cholesterol content of rat liver microsomes. Effects upon membrane 'fluidity' and activities of glucose-6-phosphatase and fatty acid desaturation systems. Biochim Biophys Acta. 1985 Sep 25;819(1):45–54. doi: 10.1016/0005-2736(85)90194-4. [DOI] [PubMed] [Google Scholar]
- Guyer W., Bloch K. Phosphatidylcholine and cholesterol interactions in model membranes. Chem Phys Lipids. 1983 Nov;33(4):313–322. doi: 10.1016/0009-3084(83)90025-7. [DOI] [PubMed] [Google Scholar]
- Hoare D. G. A curve-fitting procedure utilizing a small computer for equations containing three or four unknown constants. Anal Biochem. 1972 Apr;46(2):604–615. doi: 10.1016/0003-2697(72)90332-6. [DOI] [PubMed] [Google Scholar]
- Houslay M. D., Palmer R. W. Changes in the form of Arrhenius plots of the activity of glucagon-stimulated adenylate cyclase and other hamster liver plasma-membrane enzymes occurring on hibernation. Biochem J. 1978 Sep 15;174(3):909–919. doi: 10.1042/bj1740909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleemann W., McConnell H. M. Interactions of proteins and cholesterol with lipids in bilayer membranes. Biochim Biophys Acta. 1976 Jan 21;419(2):206–222. doi: 10.1016/0005-2736(76)90347-3. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee A. G., East J. M., Froud R. J. Are essential fatty acids essential for membrane function? Prog Lipid Res. 1986;25(1-4):41–46. doi: 10.1016/0163-7827(86)90009-3. [DOI] [PubMed] [Google Scholar]
- Lentz B. R., Moore B. M., Barrow D. A. Light-scattering effects in the measurement of membrane microviscosity with diphenylhexatriene. Biophys J. 1979 Mar;25(3):489–494. doi: 10.1016/S0006-3495(79)85318-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neskovic N. M., Kostic D. M. Quantitative analysis of rat liver phospholipids by a two-step thin-layer chromatographic procedure. J Chromatogr. 1968 Jun 4;35(2):297–300. doi: 10.1016/s0021-9673(01)82389-x. [DOI] [PubMed] [Google Scholar]
- Owen J. S., Bruckdorfer K. R., Day R. C., McIntyre N. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. J Lipid Res. 1982 Jan;23(1):124–132. [PubMed] [Google Scholar]
- Pechey D. T., Graham A. B., Wood G. C. The phospholipid-dependence of uridine diphosphate glucuronyltransferase. Temperature-dependence of microsomal enzyme activity and thermotropic changes in membrane structure. Biochem J. 1978 Oct 1;175(1):115–124. doi: 10.1042/bj1750115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poon R., Clark W. H. The relationship between plasma membrane lipid composition and physical-chemical properties. III. Detailed physical and biochemical analysis of fatty acid-substituted EL4 plasma membranes. Biochim Biophys Acta. 1982 Jul 28;689(2):230–240. doi: 10.1016/0005-2736(82)90255-3. [DOI] [PubMed] [Google Scholar]
- Pugh E. L., Kates M., Szabo A. G. Fluorescence polarization studies of rat liver microsomes with altered phospholipid desaturase activities. Can J Biochem. 1980 Oct;58(10):952–958. doi: 10.1139/o80-130. [DOI] [PubMed] [Google Scholar]
- REID M. E., BRIGGS G. M. Development of a semi-synthetic diet for young guinea pigs. J Nutr. 1953 Nov 10;51(3):341–354. doi: 10.1093/jn/51.3.341. [DOI] [PubMed] [Google Scholar]
- Rintoul D. A., Chou S. M., Silbert D. F. Physical characterization of sterol-depleted LM-cell plasma membranes. J Biol Chem. 1979 Oct 25;254(20):10070–10077. [PubMed] [Google Scholar]
- Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
- Singh O. M., Graham A. B., Wood G. C. The phospholipid-dependence of UDP glucuronosyltransferase. Purification, delipidation and reconstitution of microsomal enzyme from guinea-pig liver. Eur J Biochem. 1981 May 15;116(2):311–316. doi: 10.1111/j.1432-1033.1981.tb05335.x. [DOI] [PubMed] [Google Scholar]
- Sklar L. A., Miljanich G. P., Dratz E. A. Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid, and fluid lipid phases. Biochemistry. 1979 May 1;18(9):1707–1716. doi: 10.1021/bi00576a012. [DOI] [PubMed] [Google Scholar]
- Sklar L. A. The partition of cis-parinaric acid and trans-parinaric acid among aqueous, fluid lipid, and solid lipid phases. Mol Cell Biochem. 1980 Nov 20;32(3):169–177. doi: 10.1007/BF00227444. [DOI] [PubMed] [Google Scholar]
- Stubbs C. D., Kouyama T., Kinosita K., Jr, Ikegami A. Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers. Biochemistry. 1981 Jul 21;20(15):4257–4262. doi: 10.1021/bi00518a004. [DOI] [PubMed] [Google Scholar]
- Stubbs C. D., Smith A. D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984 Jan 27;779(1):89–137. doi: 10.1016/0304-4157(84)90005-4. [DOI] [PubMed] [Google Scholar]
- Stubbs C. D., Tsang W. M., Belin J., Smith A. D., Johnson S. M. Incubation of exogenous fatty acids with lymphocytes. Changes in fatty acid composition and effects on the rotational relaxation time of 1,6-diphenyl-1,3,5-hexatriene. Biochemistry. 1980 Jun 10;19(12):2756–2762. doi: 10.1021/bi00553a034. [DOI] [PubMed] [Google Scholar]
- Williamson P., Mattocks K., Schlegel R. A. Merocyanine 540, a fluorescent probe sensitive to lipid packing. Biochim Biophys Acta. 1983 Jul 27;732(2):387–393. doi: 10.1016/0005-2736(83)90055-x. [DOI] [PubMed] [Google Scholar]
- York D. A., Hyslop P. A., French R. Fluorescence polarisation and composition of membranes in genetic obesity. Biochem Biophys Res Commun. 1982 Jun 30;106(4):1478–1453. doi: 10.1016/0006-291x(82)91280-3. [DOI] [PubMed] [Google Scholar]
