Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1989 Jan;63(1):311–318. doi: 10.1128/jvi.63.1.311-318.1989

Relationship between organization of the actin cytoskeleton and the cell cycle in normal and adenovirus-infected rat cells.

P Jackson 1, A J Bellett 1
PMCID: PMC247686  PMID: 2521186

Abstract

Flow cytometry and staining with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin were used to investigate organization of the actin cytoskeleton in rat embryo cells at different stages of normal and adenovirus E1A-induced cell cycles. In uninfected cells in G0-G1 and S phases, actin was predominantly in the form of stress fibers. In G2, this organization changed to peripheral rings of thin filaments, while during mitosis, actin had a diffuse distribution. Infection of quiescent rat cells by adenovirus caused them to enter the cell cycle and replicate DNA and also caused disruption of stress fibers. Rapid disappearance of stress fibers and the appearance of peripheral rings of actin filaments began from 13 h after infection and closely followed synthesis of the E1A proteins. Infected cells began S phase at about 24 h after infection, and cells in G2 and mitosis were seen from 30 to 50 h. Thus, disruption of the actin cytoskeleton is an early effect of E1A and not an indirect consequence of the entry of infected cells into the cell cycle.

Full text

PDF
311

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellett A. J., Li P., David E. T., Mackey E. J., Braithwaite A. W., Cutt J. R. Control functions of adenovirus transformation region E1A gene products in rat and human cells. Mol Cell Biol. 1985 Aug;5(8):1933–1939. doi: 10.1128/mcb.5.8.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bockus B. J., Stiles C. D. Regulation of cytoskeletal architecture by platelet-derived growth factor, insulin and epidermal growth factor. Exp Cell Res. 1984 Jul;153(1):186–197. doi: 10.1016/0014-4827(84)90460-9. [DOI] [PubMed] [Google Scholar]
  3. Braithwaite A. W., Cheetham B. F., Li P., Parish C. R., Waldron-Stevens L. K., Bellett A. J. Adenovirus-induced alterations of the cell growth cycle: a requirement for expression of E1A but not of E1B. J Virol. 1983 Jan;45(1):192–199. doi: 10.1128/jvi.45.1.192-199.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braithwaite A. W., Murray J. D., Bellett A. J. Alterations to controls of cellular DNA synthesis by adenovirus infection. J Virol. 1981 Aug;39(2):331–340. doi: 10.1128/jvi.39.2.331-340.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fisher P. B., Boersig M. R., Graham G. M., Weinstein I. B. Production of growth factors by type 5 adenovirus transformed rat embryo cells. J Cell Physiol. 1983 Mar;114(3):365–370. doi: 10.1002/jcp.1041140315. [DOI] [PubMed] [Google Scholar]
  6. Goldman R. D., Yerna M. J., Schloss J. A. Localization and organization of microfilaments and related proteins in normal and virus-transformed cells. J Supramol Struct. 1976;5(2):155–183. doi: 10.1002/jss.400050206. [DOI] [PubMed] [Google Scholar]
  7. Herman B., Harrington M. A., Olashaw N. E., Pledger W. J. Identification of the cellular mechanisms responsible for platelet-derived growth factor induced alterations in cytoplasmic vinculin distribution. J Cell Physiol. 1986 Jan;126(1):115–125. doi: 10.1002/jcp.1041260116. [DOI] [PubMed] [Google Scholar]
  8. Herman B., Pledger W. J. Platelet-derived growth factor-induced alterations in vinculin and actin distribution in BALB/c-3T3 cells. J Cell Biol. 1985 Apr;100(4):1031–1040. doi: 10.1083/jcb.100.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houweling A., van den Elsen P. J., van der Eb A. J. Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology. 1980 Sep;105(2):537–550. doi: 10.1016/0042-6822(80)90054-9. [DOI] [PubMed] [Google Scholar]
  10. Jackson P., Bellett A. J. Reduced microfilament organization in adenovirus type 5-infected rat embryo cells: a function of early region 1a. J Virol. 1985 Sep;55(3):644–650. doi: 10.1128/jvi.55.3.644-650.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jackson P., Bellett A. J. The organization of vinculin and alpha-actinin in adenovirus 5-infected rat embryo cells. Eur J Cell Biol. 1987 Aug;44(1):161–165. [PubMed] [Google Scholar]
  12. Murray J. D., Bellett A. J., Braithwaite A. w., Waldron L. K., Taylor I. W. Altered cell cycle progression and aberrant mitosis in adenovirus-infected rodent cells. J Cell Physiol. 1982 Apr;111(1):89–96. doi: 10.1002/jcp.1041110114. [DOI] [PubMed] [Google Scholar]
  13. Quinlan M. P., Sullivan N., Grodzicker T. Growth factor(s) produced during infection with an adenovirus variant stimulates proliferation of nonestablished epithelial cells. Proc Natl Acad Sci U S A. 1987 May;84(10):3283–3287. doi: 10.1073/pnas.84.10.3283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruley H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature. 1983 Aug 18;304(5927):602–606. doi: 10.1038/304602a0. [DOI] [PubMed] [Google Scholar]
  15. Sanger J. M., Sanger J. W. Banding and polarity of actin filaments in interphase and cleaving cells. J Cell Biol. 1980 Aug;86(2):568–575. doi: 10.1083/jcb.86.2.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanger J. W. Changing patterns of actin localization during cell division. Proc Natl Acad Sci U S A. 1975 May;72(5):1913–1916. doi: 10.1073/pnas.72.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schlessinger J., Geiger B. Epidermal growth factor induces redistribution of actin and alpha-actinin in human epidermal carcinoma cells. Exp Cell Res. 1981 Aug;134(2):273–279. doi: 10.1016/0014-4827(81)90426-2. [DOI] [PubMed] [Google Scholar]
  18. Shimojo H., Yamashita T. Induction of DNA synthesis by adenoviruses in contact-inhibited hamster cells. Virology. 1968 Nov;36(3):422–433. doi: 10.1016/0042-6822(68)90167-0. [DOI] [PubMed] [Google Scholar]
  19. Stabel S., Argos P., Philipson L. The release of growth arrest by microinjection of adenovirus E1A DNA. EMBO J. 1985 Sep;4(9):2329–2336. doi: 10.1002/j.1460-2075.1985.tb03934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strohl W. A. The response of BHK21 cells to infection with type 12 adenovirus. II. Relationship of virus-stimulated DNA synthesis to other viral functions. Virology. 1969 Dec;39(4):653–665. doi: 10.1016/0042-6822(69)90004-x. [DOI] [PubMed] [Google Scholar]
  21. Taylor I. W., Milthorpe B. K. An evaluation of DNA fluorochromes, staining techniques, and analysis for flow cytometry. I. Unperturbed cell populations. J Histochem Cytochem. 1980 Nov;28(11):1224–1232. doi: 10.1177/28.11.6159392. [DOI] [PubMed] [Google Scholar]
  22. Yamada K., Sasaki M., Kimura G. Effect of sodium butyrate on actin distribution in rat 3Y1 fibroblasts in monolayer culture. J Cell Physiol. 1985 Nov;125(2):235–242. doi: 10.1002/jcp.1041250210. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES