Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1989 Feb;134(2):253–262.

Injury and remodeling of pulmonary veins by high oxygen. A morphometric study.

L M Hu 1, R Jones 1
PMCID: PMC1879584  PMID: 2521773

Abstract

Breathing 87% oxygen at normobaric pressure for 28 days injuries and remodels the wall of distal pulmonary veins (less than or equal to 150 mu). Occluded vessels are evident, as are vessel remnants in which wall integrity is lost (obliterated vessels). Significantly more veins have a muscular or partially muscular wall than normal (P less than or equal to 0.001 for veins in each size category less than or equal to 150 mu, chi-square test). In some veins new muscle develops between an external and internal lamina but in many it develops within the intima, beneath the endothelium and adluminal to a single lamina. Small veins (20-25 mu in ED) with a muscular or partially muscular wall are present only in the hyperoxic lung. Increase in the percent medial thickness (%MT) of veins indicates lumen narrowing: this is relatively greater in the smallest veins. Reduction in the cross-sectional area of venous segments that are immediately postcapillary, by lumen narrowing or occlusion, contributes to the restriction of the pulmonary vascular bed by hyperoxia.

Full text

PDF
253

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coflesky J. T., Jones R. C., Reid L. M., Evans J. N. Mechanical properties and structure of isolated pulmonary arteries remodeled by chronic hyperoxia. Am Rev Respir Dis. 1987 Aug;136(2):388–394. doi: 10.1164/ajrccm/136.2.388. [DOI] [PubMed] [Google Scholar]
  2. Crapo J. D., Barry B. E., Foscue H. A., Shelburne J. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am Rev Respir Dis. 1980 Jul;122(1):123–143. doi: 10.1164/arrd.1980.122.1.123. [DOI] [PubMed] [Google Scholar]
  3. Davies P., Burke G., Reid L. The structure of the wall of the rat intraacinar pulmonary artery: an electron microscopic study of microdissected preparations. Microvasc Res. 1986 Jul;32(1):50–63. doi: 10.1016/0026-2862(86)90043-9. [DOI] [PubMed] [Google Scholar]
  4. Davies P., Reid L. Pulmonary veno-occlusive disease in siblings: case reports and morphometric study. Hum Pathol. 1982 Oct;13(10):911–915. doi: 10.1016/s0046-8177(82)80051-8. [DOI] [PubMed] [Google Scholar]
  5. Dingemans K. P., Wagenvoort C. A. Pulmonary arteries and veins in experimental hypoxia. An ultrastructural study. Am J Pathol. 1978 Nov;93(2):353–368. [PMC free article] [PubMed] [Google Scholar]
  6. FULTON R. M., HUTCHINSON E. C., JONES A. M. Ventricular weight in cardiac hypertrophy. Br Heart J. 1952 Jul;14(3):413–420. doi: 10.1136/hrt.14.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hawe A., Tsakiris A. G., Rastelli G. C., Titus J. L., McGoon D. C. Experimental studies of the pathogenesis of pulmonary vascular obstructive disease. J Thorac Cardiovasc Surg. 1972 Apr;63(4):652–664. [PubMed] [Google Scholar]
  8. Hislop A., Reid L. Normal structure and dimensions of the pulmonary arteries in the rat. J Anat. 1978 Jan;125(Pt 1):71–83. [PMC free article] [PubMed] [Google Scholar]
  9. Jones R., Zapol W. M., Reid L. Oxygen toxicity and restructuring of pulmonary arteries--a morphometric study. The response to 4 weeks' exposure to hyperoxia and return to breathing air. Am J Pathol. 1985 Nov;121(2):212–223. [PMC free article] [PubMed] [Google Scholar]
  10. Jones R., Zapol W. M., Reid L. Pulmonary artery remodeling and pulmonary hypertension after exposure to hyperoxia for 7 days. A morphometric and hemodynamic study. Am J Pathol. 1984 Nov;117(2):273–285. [PMC free article] [PubMed] [Google Scholar]
  11. Joris I., Majno G. Endothelial changes induced by arterial spasm. Am J Pathol. 1981 Mar;102(3):346–358. [PMC free article] [PubMed] [Google Scholar]
  12. Kumar R. K., Bennett R. A., Brody A. R. A homologue of platelet-derived growth factor produced by rat alveolar macrophages. FASEB J. 1988 Apr;2(7):2272–2277. doi: 10.1096/fasebj.2.7.3280379. [DOI] [PubMed] [Google Scholar]
  13. Le J., Vilcek J. Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab Invest. 1987 Mar;56(3):234–248. [PubMed] [Google Scholar]
  14. Libby P., Warner S. J., Friedman G. B. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J Clin Invest. 1988 Feb;81(2):487–498. doi: 10.1172/JCI113346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meyrick B., Reid L. The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Invest. 1978 Feb;38(2):188–200. [PubMed] [Google Scholar]
  16. Rabinovitch M., Reid L. M. Quantitative structural analysis of the pulmonary vascular bed in congenital heart defects. Cardiovasc Clin. 1981;11(2):149–169. [PubMed] [Google Scholar]
  17. Ryland D., Reid L. The pulmonary circulation in cystic fibrosis. Thorax. 1975 Jun;30(3):285–292. doi: 10.1136/thx.30.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tomashefski J. F., Jr, Davies P., Boggis C., Greene R., Zapol W. M., Reid L. M. The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol. 1983 Jul;112(1):112–126. [PMC free article] [PubMed] [Google Scholar]
  19. VANBOGAERT A., TOSETTI R. EXPERIMENTAL PULMONARY HYPERTENSION. Br Heart J. 1963 Nov;25:771–783. doi: 10.1136/hrt.25.6.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vender R. L., Clemmons D. R., Kwock L., Friedman M. Reduced oxygen tension induces pulmonary endothelium to release a pulmonary smooth muscle cell mitogen(s). Am Rev Respir Dis. 1987 Mar;135(3):622–627. doi: 10.1164/arrd.1987.135.3.622. [DOI] [PubMed] [Google Scholar]
  21. Wagenvoort C. A., Dingemans K. P., Lotgering G. G. Electron microscopy of pulmonary vasculature after application of fulvine. Thorax. 1974 Sep;29(5):511–521. doi: 10.1136/thx.29.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wagenvoort C. A., Dingemans K. P., Lotgering G. G. Electron microscopy of pulmonary vasculature after application of fulvine. Thorax. 1974 Sep;29(5):511–521. doi: 10.1136/thx.29.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wagenvoort C. A., Wagenvoort N., Dijk H. J. Effect of fulvine on pulmonary arteries and veins of the rat. Thorax. 1974 Sep;29(5):522–529. doi: 10.1136/thx.29.5.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wagenvoort C. A., Wagenvoort N. Pulmonary venous changes in chronic hypoxia. Virchows Arch A Pathol Anat Histol. 1976 Nov 22;372(1):51–56. doi: 10.1007/BF00429716. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES