Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Apr;411:301–323. doi: 10.1113/jphysiol.1989.sp017575

The electrophysiological effects of neurotensin on neurones of guinea-pig prevertebral sympathetic ganglia.

W H Stapelfeldt 1, J H Szurszewski 1
PMCID: PMC1190526  PMID: 2575666

Abstract

1. The membrane effects of neurotensin on neurons of guinea-pig prevertebral ganglia were investigated by means of intracellular recording techniques in vitro. 2. Neurotensin (2-5 microM) applied by superfusion caused depolarizing responses in fifty-seven of seventy-four neurones tested in the inferior mesenteric ganglion and thirty-seven of forty-seven neurones tested in the coeliac plexus. The remaining neurones tested showed no membrane response. 3. Responses to neurotensin could be discriminated into two different types of membrane depolarizations on the basis of their different time courses and pharmacological characteristics: a steady-state type of depolarization and a transient type of depolarization. Seven of fifty-seven responsive neurones tested in the inferior mesenteric ganglion and ten of thirty-seven responsive neurones tested in the coeliac plexus responded to neurotensin with a depolarization which was maintained constant as long as neurotensin was superfused over the preparation (steady-state type). Forty-eight of fifty-seven responsive neurones tested in the inferior mesenteric ganglion and twenty of thirty-seven responsive neurones tested in the coeliac plexus responded with a transient depolarization which was followed by a repolarization in the maintained presence of neurotensin (transient type). A combination of both types of responses was observed in two neurones tested in the inferior mesenteric ganglion and in seven neurones tested in the coeliac plexus. 4. Steady-state type responses were characterized by a slowly developing membrane depolarization which reached a plateau and lasted throughout the presence of neurotensin. Amplitude and time course of this response were not altered in a solution containing hexamethonium (10 microM) and atropine (10 microM) or by a solution low in calcium (1 mM) and high in magnesium (15 mM). 5. Transient type depolarizations evoked by neurotensin were faster in reaching their maximum and were followed by a repolarization during the maintained presence of neurotensin. Responses similar in time course and amplitude were obtained in solutions containing hexamethonium (10-100 microM) and atropine (10 microM). However, transient responses were abolished in a solution low in calcium (1 mM) and high in magnesium (15 mM) and were markedly attenuated in ganglia treated with capsaicin (3 microM). 6. Both types of depolarizations were associated with increases in membrane input resistance. Both responses converted subthreshold depolarizing electrotonic potentials and subthreshold fast EPSPs to action potentials. 7. Both types of depolarizations were observed when the C-terminal hexapeptide fragment neurotensin 8-13 was used.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
301

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Saffar A., Rosell S. Effects of neurotensin and neurotensin analogues on the migrating myoelectrical complexes in the small intestine of rats. Acta Physiol Scand. 1981 Jun;112(2):203–208. doi: 10.1111/j.1748-1716.1981.tb06805.x. [DOI] [PubMed] [Google Scholar]
  2. BROWN G. L., PASCOE J. W. Conduction through the inferior mesenteric ganglion of the rabbit. J Physiol. 1952 Sep;118(1):113–123. doi: 10.1113/jphysiol.1952.sp004777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baldino F., Jr, Davis L. G., Wolfson B. Structure-activity studies with carboxy- and amino-terminal fragments of neurotensin on hypothalamic neurons in vitro. Brain Res. 1985 Sep 9;342(2):266–272. doi: 10.1016/0006-8993(85)91125-4. [DOI] [PubMed] [Google Scholar]
  4. Carraway R., Leeman S. E. Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine, and stomach. J Biol Chem. 1976 Nov 25;251(22):7045–7052. [PubMed] [Google Scholar]
  5. Carraway R., Leeman S. E. Radioimmunoassay for neurotensin, a hypothalamic peptide. J Biol Chem. 1976 Nov 25;251(22):7035–7044. [PubMed] [Google Scholar]
  6. Carraway R., Leeman S. E. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem. 1973 Oct 10;248(19):6854–6861. [PubMed] [Google Scholar]
  7. Costa M., Furness J. B., Gibbins I. L. Chemical coding of enteric neurons. Prog Brain Res. 1986;68:217–239. doi: 10.1016/s0079-6123(08)60241-1. [DOI] [PubMed] [Google Scholar]
  8. Crowcroft P. J., Holman M. E., Szurszewski J. H. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J Physiol. 1971 Dec;219(2):443–461. doi: 10.1113/jphysiol.1971.sp009671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crowcroft P. J., Szurszewski J. H. A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J Physiol. 1971 Dec;219(2):421–441. doi: 10.1113/jphysiol.1971.sp009670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalsgaard C. J., Hökfelt T., Schultzberg M., Lundberg J. M., Terenius L., Dockray G. J., Goldstein M. Origin of peptide-containing fibers in the inferior mesenteric ganglion of the guinea-pig: immunohistochemical studies with antisera to substance P, enkephalin, vasoactive intestinal polypeptide, cholecystokinin and bombesin. Neuroscience. 1983 May;9(1):191–211. doi: 10.1016/0306-4522(83)90056-8. [DOI] [PubMed] [Google Scholar]
  11. Dalsgaard C. J., Vincent S. R., Hökfelt V. T., Christensson I., Terenius L. Separate origins for the dynorphin and enkephalin immunoreactive fibers in the inferior mesenteric ganglion of the guinea pig. J Comp Neurol. 1983 Dec 20;221(4):482–489. doi: 10.1002/cne.902210410. [DOI] [PubMed] [Google Scholar]
  12. Dalsgaard C. J., Vincent S. R., Schultzberg M., Hökfelt T., Elfvin L. G., Terenius L., Dockray G. J. Capsaicin-induced depletion of substance P-like immunoreactivity in guinea pig sympathetic ganglia. J Auton Nerv Syst. 1983 Dec;9(4):595–606. doi: 10.1016/0165-1838(83)90116-9. [DOI] [PubMed] [Google Scholar]
  13. Dick E., Miller R. F. Peptides influence retinal ganglion cells. Neurosci Lett. 1981 Oct 23;26(2):131–135. doi: 10.1016/0304-3940(81)90338-4. [DOI] [PubMed] [Google Scholar]
  14. Dun N. J., Jiang Z. G., Mo N. Long-term facilitation of peptidergic transmission by catecholamines in guinea-pig inferior mesenteric ganglia. J Physiol. 1984 Dec;357:37–50. doi: 10.1113/jphysiol.1984.sp015487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dun N. J., Jiang Z. G. Non-cholinergic excitatory transmission in inferior mesenteric ganglia of the guinea-pig: possible mediation by substance P. J Physiol. 1982 Apr;325:145–159. doi: 10.1113/jphysiol.1982.sp014141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dun N. J., Kiraly M. Capsaicin causes release of a substance P-like peptide in guinea-pig inferior mesenteric ganglia. J Physiol. 1983 Jul;340:107–120. doi: 10.1113/jphysiol.1983.sp014752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Elfvin L. G., Hökfelt T., Goldstein M. Fluorescence microscopical, immunohistochemical and ultrastructural studies on sympathetic ganglia of the guinea pig, with special reference to the sif cells and their catecholamine content. J Ultrastruct Res. 1975 Jun;51(3):377–396. doi: 10.1016/s0022-5320(75)80101-8. [DOI] [PubMed] [Google Scholar]
  18. Gamse R., Wax A., Zigmond R. E., Leeman S. E. Immunoreactive substance P in sympathetic ganglia: distribution and sensitivity towards capsaicin. Neuroscience. 1981;6(3):437–441. doi: 10.1016/0306-4522(81)90136-6. [DOI] [PubMed] [Google Scholar]
  19. Goedert M., Hunter J. C., Ninkovic M. Evidence for neurotensin as a non-adrenergic, non-cholinergic neurotransmitter in guinea pig ileum. Nature. 1984 Sep 6;311(5981):59–62. doi: 10.1038/311059a0. [DOI] [PubMed] [Google Scholar]
  20. Herbison A. E., Hubbard J. I., Sirett N. E. Neurotensin excites neurons in the arcuate nucleus of the rat hypothalamus in vitro. Brain Res. 1986 Feb 5;364(2):391–395. doi: 10.1016/0006-8993(86)90854-1. [DOI] [PubMed] [Google Scholar]
  21. Hernandez D. E., Richardson C. M., Nemeroff C. B., Orlando R. C., St-Pierre S., Rioux F., Prange A. J., Jr Evidence for biological activity of two N-terminal fragments of neurotensin, neurotensin1-8 and neurotensin1-10. Brain Res. 1984 May 28;301(1):153–156. doi: 10.1016/0006-8993(84)90414-1. [DOI] [PubMed] [Google Scholar]
  22. Heym C., Reinecke M., Weihe E., Forssmann W. G. Dopamine-beta-hydroxylase-, neurotensin-, substance P-, vasoactive intestinal polypeptide- and enkephalin-immunohistochemistry of paravertebral and prevertebral ganglia in the cat. Cell Tissue Res. 1984;235(2):411–418. doi: 10.1007/BF00217867. [DOI] [PubMed] [Google Scholar]
  23. Hökfelt T., Elfvin L. G., Schultzberg M., Goldstein M., Nilsson G. On the occurrence of substance P-containing fibers in sympathetic ganglia: immunohistochemical evidence. Brain Res. 1977 Aug 19;132(1):29–41. doi: 10.1016/0006-8993(77)90704-1. [DOI] [PubMed] [Google Scholar]
  24. Jiang Z. G., Simmons M. A., Dun N. J. Enkephalinergic modulation of non-cholinergic transmission in mammalian prevertebral ganglia. Brain Res. 1982 Mar 4;235(1):185–191. doi: 10.1016/0006-8993(82)90211-6. [DOI] [PubMed] [Google Scholar]
  25. Kobayashi R. M., Brown M., Vale W. Regional distribution of neurotensin and somatostatin in rat brain. Brain Res. 1977 May 13;126(3):584–588. doi: 10.1016/0006-8993(77)90613-8. [DOI] [PubMed] [Google Scholar]
  26. Konishi S., Tsunoo A., Otsuka M. Enkephalin as a transmitter for presynaptic inhibition in sympathetic ganglia. Nature. 1981 Nov 5;294(5836):80–82. doi: 10.1038/294080a0. [DOI] [PubMed] [Google Scholar]
  27. Konishi S., Tsunoo A., Otsuka M. Enkephalins presynaptically inhibit cholinergic transmission in sympathetic ganglia. Nature. 1979 Nov 29;282(5738):515–516. doi: 10.1038/282515a0. [DOI] [PubMed] [Google Scholar]
  28. Kreulen D. L., Peters S. Non-cholinergic transmission in a sympathetic ganglion of the guinea-pig elicited by colon distension. J Physiol. 1986 May;374:315–334. doi: 10.1113/jphysiol.1986.sp016081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kreulen D. L., Szurszewski J. H. Reflex pathways in the abdominal prevertebral ganglia: evidence for a colo-colonic inhibitory reflex. J Physiol. 1979 Oct;295:21–32. doi: 10.1113/jphysiol.1979.sp012952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Krier J., Szurszewski J. H. Effect of substance P on colonic mechanoreceptors, motility, and sympathetic neurons. Am J Physiol. 1982 Oct;243(4):G259–G267. doi: 10.1152/ajpgi.1982.243.4.G259. [DOI] [PubMed] [Google Scholar]
  31. Leander S., Ekman R., Uddman R., Sundler F., Håkanson R. Neuronal cholecystokinin, gastrin-releasing peptide, neurotensin, and beta-endorphin in the intestine of the guinea pig. Distribution and possible motor functions. Cell Tissue Res. 1984;235(3):521–531. doi: 10.1007/BF00226949. [DOI] [PubMed] [Google Scholar]
  32. Love J. A., Szurszewski J. H. The electrophysiological effects of vasoactive intestinal polypeptide in the guinea-pig inferior mesenteric ganglion. J Physiol. 1987 Dec;394:67–84. doi: 10.1113/jphysiol.1987.sp016860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lundberg J. M., Hökfelt T., Anggård A., Uvnäs-Wallensten K., Brimijoin S., Brodin E., Fahrenkrug J. Peripheral peptide neurons: distribution, axonal transport, and some aspects on possible function. Adv Biochem Psychopharmacol. 1980;22:25–36. [PubMed] [Google Scholar]
  34. Lundberg J. M., Rökaeus A., Hökfelt T., Rosell S., Brown M., Goldstein M. Neurotensin-like immunoreactivity in the preganglionic sympathetic nerves and in the adrenal medulla of the cat. Acta Physiol Scand. 1982 Jan;114(1):153–155. doi: 10.1111/j.1748-1716.1982.tb06965.x. [DOI] [PubMed] [Google Scholar]
  35. Matthews M. R., Cuello A. C. Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1668–1672. doi: 10.1073/pnas.79.5.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mo N., Dun N. J. Cholecystokinin octapeptide depolarizes guinea pig inferior mesenteric ganglion cells and facilitates nicotinic transmission. Neurosci Lett. 1986 Mar 14;64(3):263–268. doi: 10.1016/0304-3940(86)90339-3. [DOI] [PubMed] [Google Scholar]
  37. Mo N., Dun N. J. Vasoactive intestinal polypeptide facilitates muscarinic transmission in mammalian sympathetic ganglia. Neurosci Lett. 1984 Nov 23;52(1-2):19–23. doi: 10.1016/0304-3940(84)90344-6. [DOI] [PubMed] [Google Scholar]
  38. Mudge A. W., Leeman S. E., Fischbach G. D. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc Natl Acad Sci U S A. 1979 Jan;76(1):526–530. doi: 10.1073/pnas.76.1.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Neild T. O. Slowly-developing depolarization of neurones in the guinea-pig inferior mesenteric ganglion following repetitive stimulation of the preganglionic nerves. Brain Res. 1978 Jan 27;140(2):231–239. doi: 10.1016/0006-8993(78)90457-2. [DOI] [PubMed] [Google Scholar]
  40. Okuma Y., Fukuda Y., Osumi Y. Neurotensin potentiates the potassium-induced release of endogenous dopamine from rat striatal slices. Eur J Pharmacol. 1983 Sep 16;93(1-2):27–33. doi: 10.1016/0014-2999(83)90027-4. [DOI] [PubMed] [Google Scholar]
  41. Okuma Y., Osumi Y. Neurotensin-induced release of endogenous noradrenaline from rat hypothalamic slices. Life Sci. 1982 Jan 4;30(1):77–84. doi: 10.1016/0024-3205(82)90638-5. [DOI] [PubMed] [Google Scholar]
  42. Peters S., Kreulen D. L. A slow EPSP in mammalian inferior mesenteric ganglion persists after in vivo capsaicin. Brain Res. 1984 Jun 11;303(1):186–189. doi: 10.1016/0006-8993(84)90227-0. [DOI] [PubMed] [Google Scholar]
  43. Peters S., Kreulen D. L. Fast and slow synaptic potentials produced in a mammalian sympathetic ganglion by colon distension. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1941–1944. doi: 10.1073/pnas.83.6.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Phillis J. W., Kirkpatrick J. R. The actions of motilin, luteinizing hormone releasing hormone, cholecystokinin, somatostatin, vasoactive intestinal peptide, and other peptides on rat cerebral cortical neurons. Can J Physiol Pharmacol. 1980 Jun;58(6):612–623. doi: 10.1139/y80-102. [DOI] [PubMed] [Google Scholar]
  45. Pinnock R. D. Neurotensin depolarizes substantia nigra dopamine neurones. Brain Res. 1985 Jul 8;338(1):151–154. doi: 10.1016/0006-8993(85)90258-6. [DOI] [PubMed] [Google Scholar]
  46. Reinecke M., Forssmann W. G., Thiekötter G., Triepel J. Localization of neurotensin-immunoreactivity in the spinal cord and peripheral nervous system of the guinea pig. Neurosci Lett. 1983 May 27;37(1):37–42. doi: 10.1016/0304-3940(83)90501-3. [DOI] [PubMed] [Google Scholar]
  47. SCHAPIRO H., WOODWARD E. R. Pathway of enterogastric reflex. Proc Soc Exp Biol Med. 1959 Jul;101(3):407–409. doi: 10.3181/00379727-101-24960. [DOI] [PubMed] [Google Scholar]
  48. SEMBA T. Intestino-intestinal inhibitory reflexes. Jpn J Physiol. 1954 Sep 1;4(3):241–245. doi: 10.2170/jjphysiol.4.241. [DOI] [PubMed] [Google Scholar]
  49. Schultzberg M., Hökfelt T., Nilsson G., Terenius L., Rehfeld J. F., Brown M., Elde R., Goldstein M., Said S. Distribution of peptide- and catecholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine beta-hydroxylase. Neuroscience. 1980;5(4):689–744. doi: 10.1016/0306-4522(80)90166-9. [DOI] [PubMed] [Google Scholar]
  50. Schumann M. A., Kreulen D. L. Action of cholecystokinin octapeptide and CCK-related peptides on neurons in inferior mesenteric ganglion of guinea pig. J Pharmacol Exp Ther. 1986 Nov;239(2):618–625. [PubMed] [Google Scholar]
  51. Shu H. D., Love J. A., Szurszewski J. H. Effect of enkephalins on colonic mechanoreceptor synaptic input to inferior mesenteric ganglion. Am J Physiol. 1987 Jan;252(1 Pt 1):G128–G135. doi: 10.1152/ajpgi.1987.252.1.G128. [DOI] [PubMed] [Google Scholar]
  52. Stanzione P., Zieglgänsberger W. Action of neurotensin on spinal cord neurons in the rat. Brain Res. 1983 May 23;268(1):111–118. doi: 10.1016/0006-8993(83)90395-5. [DOI] [PubMed] [Google Scholar]
  53. Suzue T., Yanaihara N., Otsuka M. Actions of vasopressin, gastrin releasing peptide and other peptides on neurons on newborn rat spinal cord in vitro. Neurosci Lett. 1981 Oct 23;26(2):137–142. doi: 10.1016/0304-3940(81)90339-6. [DOI] [PubMed] [Google Scholar]
  54. Szurszewski J. H. Physiology of mammalian prevertebral ganglia. Annu Rev Physiol. 1981;43:53–68. doi: 10.1146/annurev.ph.43.030181.000413. [DOI] [PubMed] [Google Scholar]
  55. Tsunoo A., Konishi S., Otsuka M. Substance P as an excitatory transmitter of primary afferent neurons in guinea-pig sympathetic ganglia. Neuroscience. 1982;7(9):2025–2037. doi: 10.1016/0306-4522(82)90117-8. [DOI] [PubMed] [Google Scholar]
  56. Uhl G. R., Snyder S. H. Neurotensin. Adv Biochem Psychopharmacol. 1981;28:87–106. [PubMed] [Google Scholar]
  57. Williams J. T., Katayama Y., North R. A. The action of neurotensin on single myenteric neurones. Eur J Pharmacol. 1979 Nov 16;59(3-4):181–186. doi: 10.1016/0014-2999(79)90280-2. [DOI] [PubMed] [Google Scholar]
  58. Young W. S., 3rd, Uhl G. R., Kuhar M. J. Iontophoresis of neurotensin in the area of the locus coeruleus. Brain Res. 1978 Jul 14;150(2):431–435. doi: 10.1016/0006-8993(78)90296-2. [DOI] [PubMed] [Google Scholar]
  59. de Quidt M. E., Emson P. C. Neurotensin facilitates dopamine release in vitro from rat striatal slices. Brain Res. 1983 Sep 12;274(2):376–380. doi: 10.1016/0006-8993(83)90722-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES