Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 May;82(9):3010–3014. doi: 10.1073/pnas.82.9.3010

Hybrid molecules containing the B-domain of insulin-like growth factor I are recognized by carrier proteins of the growth factor.

M A De Vroede, M M Rechler, S P Nissley, S Joshi, G T Burke, P G Katsoyannis
PMCID: PMC397696  PMID: 2581261

Abstract

The insulin-like growth factors (IGFs) are polypeptides in plasma that are chemically related to insulin and have mitogenic and insulin-like activity. Unlike insulin, the IGFs circulate in plasma bound to specific high molecular weight carrier proteins that regulate their delivery to target tissues. To define the sites on the IGFs that allow them to be recognized by carrier proteins, we constructed hybrid molecules containing different portions of the insulin, IGF-I, and IGF-II molecules. The presence of the B domain of IGF-I, but not the D domain of IGF-II, enables these insulin-IGF hybrid molecules to be recognized by acid-stripped IGF carrier proteins from rat serum and other sources. By contrast, neither the BIGF-I nor DIGF-II domain is sufficient to enable binding to type II IGF receptors, despite the fact that type II receptors, like the carrier protein, specifically bind IGF-I and IGF-II but do not interact with insulin. By differentiating those sites on the IGF molecule required for binding to IGF carrier protein and receptors, the insulin-IGF hybrid molecules should help delineate the role of the carrier protein in presenting biologically active IGF to target tissues.

Full text

PDF
3010

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binoux M., Hardouin S., Lassarre C., Hossenlopp P. Evidence for production by the liver of two IGF binding proteins with similar molecular weights but different affinities for IGF I and IGF II. Their relations with serum and cerebrospinal fluid IGF binding proteins. J Clin Endocrinol Metab. 1982 Sep;55(3):600–602. doi: 10.1210/jcem-55-3-600. [DOI] [PubMed] [Google Scholar]
  2. Blundell T. L., Bedarkar S., Humbel R. E. Tertiary structures, receptor binding, and antigenicity of insulinlike growth factors. Fed Proc. 1983 Jun;42(9):2592–2597. [PubMed] [Google Scholar]
  3. Cohen K. L., Nissley S. P. The serum half-life of somatomedin activity: evidence for growth hormone dependence. Acta Endocrinol (Copenh) 1976 Oct;83(2):243–258. doi: 10.1530/acta.0.0830243. [DOI] [PubMed] [Google Scholar]
  4. D'Ercole A. J., Applewhite G. T., Underwood L. E. Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol. 1980 Mar 15;75(2):315–328. doi: 10.1016/0012-1606(80)90166-9. [DOI] [PubMed] [Google Scholar]
  5. Foley T. P., Jr, Nissley S. P., Stevens R. L., King G. L., Hascall V. C., Humbel R. E., Short P. A., Rechler M. M. Demonstration of receptors for insulin and insulin-like growth factors on Swarm rat chondrosarcoma chondrocytes. Evidence that insulin stimulates proteoglycan synthesis through the insulin receptor. J Biol Chem. 1982 Jan 25;257(2):663–669. [PubMed] [Google Scholar]
  6. Grizzard J. D., D'Ercole A. J., Wilkins J. R., Moats-Staats B. M., Williams R. W. Affinity-labeled somatomedin-C receptors and binding proteins from the human fetus. J Clin Endocrinol Metab. 1984 Mar;58(3):535–543. doi: 10.1210/jcem-58-3-535. [DOI] [PubMed] [Google Scholar]
  7. Katsoyannis P. G., Schwartz G. P. The synthesis of peptides by homogeneous solution procedures. Methods Enzymol. 1977;47:501–578. doi: 10.1016/0076-6879(77)47049-6. [DOI] [PubMed] [Google Scholar]
  8. Katsoyannis P. G., Tometsko A., Zalut C., Johnson S., Trakatellis A. C. Studies on the synthesis of insulin from natural and synthetic A and B chains. I. Splitting of insulin and isolation of the S-sulfonated derivatives of the A and B chains. Biochemistry. 1967 Sep;6(9):2635–2642. doi: 10.1021/bi00861a001. [DOI] [PubMed] [Google Scholar]
  9. Katsoyannis P. G., Trakatellis A. C., Zalut C., Johnson S., Tometsko A., Schwartz G., Ginos J. Studies on the synthesis of insulin from natural and synthetic A and B chains. 3. Synthetic insulins. Biochemistry. 1967 Sep;6(9):2656–2668. doi: 10.1021/bi00861a003. [DOI] [PubMed] [Google Scholar]
  10. Katsoyannis P. G., Zalut C. Synthesis of destetrapeptide A 1-4 sheep insulin and destetrapeptide A 1-4 porcine insulin. Biochemistry. 1972 Aug 1;11(16):3065–3069. doi: 10.1021/bi00766a019. [DOI] [PubMed] [Google Scholar]
  11. Knauer D. J., Smith G. L. Inhibition of biological activity of multiplication-stimulating activity by binding to its carrier protein. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7252–7256. doi: 10.1073/pnas.77.12.7252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knauer D. J., Wagner F. W., Smith G. L. Purification and characterization of multiplication-stimulating activity (MSA) carrier protein. J Supramol Struct Cell Biochem. 1981;15(2):177–191. doi: 10.1002/jsscb.1981.380150209. [DOI] [PubMed] [Google Scholar]
  13. Marquardt H., Todaro G. J., Henderson L. E., Oroszlan S. Purification and primary structure of a polypeptide with multiplication-stimulating activity from rat liver cell cultures. Homology with human insulin-like growth factor II. J Biol Chem. 1981 Jul 10;256(13):6859–6865. [PubMed] [Google Scholar]
  14. Massagué J., Czech M. P. The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J Biol Chem. 1982 May 10;257(9):5038–5045. [PubMed] [Google Scholar]
  15. Moses A. C., Nissley S. P., Passamani J., White R. M. Further characterization of growth hormone-dependent somatomedin-binding proteins in rat serum and demonstration of somatomedin-binding proteins produced by rat liver cells in culture. Endocrinology. 1979 Feb;104(2):536–546. doi: 10.1210/endo-104-2-536. [DOI] [PubMed] [Google Scholar]
  16. Moses A. C., Nissley S. P., Short P. A., Rechler M. M., Podskalny J. M. Purification and characterization of multiplication-stimulating activity. Insulin-like growth factors purified from rat-liver-cell-conditioned medium. Eur J Biochem. 1980 Jan;103(2):387–400. doi: 10.1111/j.1432-1033.1980.tb04325.x. [DOI] [PubMed] [Google Scholar]
  17. Moses A. C., Nissley S. P., Short P. A., Rechler M. M., White R. M., Knight A. B., Higa O. Z. Increased levels of multiplication-stimulating activity, an insulin-like growth factor, in fetal rat serum. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3649–3653. doi: 10.1073/pnas.77.6.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rechler M. M., Zapf J., Nissley S. P., Froesch E. R., Moses A. C., Podskalny J. M., Schilling E. E., Humbel R. E. Interactions of insulin-like growth factors I and II and multiplication-stimulating activity with receptors and serum carrier proteins. Endocrinology. 1980 Nov;107(5):1451–1459. doi: 10.1210/endo-107-5-1451. [DOI] [PubMed] [Google Scholar]
  19. Schwander J. C., Hauri C., Zapf J., Froesch E. R. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology. 1983 Jul;113(1):297–305. doi: 10.1210/endo-113-1-297. [DOI] [PubMed] [Google Scholar]
  20. Sieber P., Eisler K., Kamber B., Riniker B., Rittel W., Märki F., de Gasparo M. Synthesis and biological activity of two disulphide bond isomers of human insulin: [A7-A11,A6-B7-cystine]- and [A6-A7,A11-B7-cystine]insulin (human). Hoppe Seylers Z Physiol Chem. 1978 Jan;359(1):113–123. doi: 10.1515/bchm.1978.359.1.113. [DOI] [PubMed] [Google Scholar]
  21. Stiles C. D., Capone G. T., Scher C. D., Antoniades H. N., Van Wyk J. J., Pledger W. J. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1279–1283. doi: 10.1073/pnas.76.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. White R. M., Nissley S. P., Moses A. C., Rechler M. M., Johnsonbaugh R. E. The growth hormone dependence of a somatomedin-binding protein in human serum. J Clin Endocrinol Metab. 1981 Jul;53(1):49–57. doi: 10.1210/jcem-53-1-49. [DOI] [PubMed] [Google Scholar]
  23. White R. M., Nissley S. P., Short P. A., Rechler M. M., Fennoy I. Developmental pattern of a serum binding protein for multiplication stimulating activity in the rat. J Clin Invest. 1982 Jun;69(6):1239–1252. doi: 10.1172/JCI110563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zapf J., Froesch E. R., Humbel R. E. The insulin-like growth factors (IGF) of human serum: chemical and biological characterization and aspects of their possible physiological role. Curr Top Cell Regul. 1981;19:257–309. doi: 10.1016/b978-0-12-152819-5.50024-5. [DOI] [PubMed] [Google Scholar]
  25. Zapf J., Mäder M., Waldvogel M., Schalch D. S., Froesch E. R. Specific binding of nonsupressible insulinlike activity to chicken embryo fibroblasts and to a solubilized fibroblast receptor. Arch Biochem Biophys. 1975 Jun;168(2):630–637. doi: 10.1016/0003-9861(75)90295-7. [DOI] [PubMed] [Google Scholar]
  26. Zapf J., Schmid C., Froesch E. R. Biological and immunological properties of insulin-like growth factors (IGF) I and II. Clin Endocrinol Metab. 1984 Mar;13(1):3–30. doi: 10.1016/s0300-595x(84)80006-7. [DOI] [PubMed] [Google Scholar]
  27. Zapf J., Schoenle E., Jagars G., Sand I., Grunwald J., Froesch E. R. Inhibition of the action of nonsuppressible insulin-like activity on isolated rat fat cells by binding to its carrier protein. J Clin Invest. 1979 May;63(5):1077–1084. doi: 10.1172/JCI109377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES