Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
1. Introduction
The lifespan of circulating erythrocytes is limited by senescence to 100–120 days [1–3]. In senescent erythrocytes hemichromes bind to and cluster the anion exchanger protein band 3 (AE1), leading to attachment of complement C3 fragments and antiband 3 immunoglobulins [4]. Prior to senescence, erythrocytes may enter suicidal death or eryptosis, characterized by erythrocyte shrinkage and cell membrane scrambling with translocation of phosphatidylserine from the inner leaflet of the cell membrane to the erythrocyte surface [5, 6]. Phosphatidylserine avidly binds annexin V, which is thus employed to identify eryptotic cells [5, 6].
The present paper lists triggers and inhibitors or eryptosis, the mechanisms involved in the regulation of eryptosis, and the (patho-) physiological significance of eryptosis. The reader is encouraged to study earlier reviews on further aspects of eryptosis [6–12].
2. Triggers and Inhibitors of Eryptosis
As listed in Table 1, a wide variety of xenobiotics and endogenous small molecules may trigger eryptosis. Moreover, eryptosis is triggered by several other stressors, such as osmotic shock [13], energy depletion [14], oxidative stress [11, 15], or increase of temperature [16]. Eryptosis is inhibited by a variety of xenobiotics (Table 2), by nitric oxide [17], and by erythropoietin [18, 19].
Table 1.
Stimulators of eryptosis.
| Stimulators | References |
|---|---|
| A23187 | [9] |
| Acrolein | [49] |
| α-lipoic acid | [50] |
| Aluminium | [18, 51] |
| Amantadine | [52] |
| Amiodarone | [53] |
| Amphotericin B | [54] |
| Amyloid | [55] |
| Anandamide | [56] |
| Anti-A IgG | [57] |
| Apigenin | [58] |
| Aristolochic acid | [59] |
| Arsenic | [60, 61] |
| Artesunate | [62] |
| Azathioprine | [63, 64] |
| Bay 11-7082 | [65, 66] |
| Bay-Y5884 | [67] |
| Beauvericin | [68] |
| Benzethonium | [69] |
| betulinic acid | [70] |
| Bismuth chloride | [71] |
| Cadmium | [72] |
| Carbon monoxide | [73] |
| Carmustine | [74] |
| Celecoxib | [75] |
| Ceramide (acylsphingosine) | [76] |
| Chlorpromazine | [77] |
| Chromium | [78] |
| Ciglitazone | [79] |
| Cisplatin | [80] |
| Copper | [81] |
| Cordycepin | [82] |
| Cryptotanshinone | [83] |
| Curcurmin | [84] |
| Cyclosporine | [85, 86] |
| CD95/Fas/ligand | [87] |
| Dermaseptin | [88] |
| Dicoumarol | [89] |
| Dimethylfumarate | [90] |
| Enniatin A | [91] |
| Estramustine | [92] |
| Ferutinin | [93] |
| Fluoxetine | [94] |
| FTY720 | [95] |
| Fumagillin | [96] |
| Gambogic acid | [97] |
| Gedunin | [98] |
| Geldanamycin | [99] |
| Glycation | [100] |
| Glycophorin-C | [101] |
| Gold chloride | [102] |
| Gold nanorods | [103] |
| Gossypol | [104] |
| Granzyme B | [105] |
| Hemin | [106] |
| Hexavalent chromium | [107] |
| Hemolysin | [108] |
| Honokiol | [109] |
| Indoxyl sulfate | [110] |
| IPA3 | [111] |
| Ipratropium bromide | [112] |
| Lead | [113] |
| Leukotriene C(4) | [16] |
| Lipopeptides | [114] |
| Listeriolysin | [115] |
| Lithium | [116] |
| Lumefantrine | [117] |
| Lysophosphatidic acid | [9] |
| Mercury | [118] |
| Methyldopa | [119] |
| Methylglyoxal | [120] |
| Miltefosine | [121] |
| Mitotane | [122] |
| Mitoxantrone | [123] |
| Monensin | [124] |
| Nitazoxanide | [125] |
| Novobiocin | [126] |
| Nystatin | [127] |
| Ochratoxin A | [128] |
| Oridonin | [129] |
| Oxysterol | [130] |
| Paclitaxel | [131, 132] |
| PAF | [133] |
| Parthenolide | [65, 66] |
| Patulin | [134] |
| Penta-O-galloyl-β-D-glucose | [135] |
| Peptidoglycan | [136, 137] |
| Phloretin | [138] |
| Phorbol-12 myristate-13 acetate | [9] |
| Phosphate | [139] |
| Phytic acid | [140] |
| Plumbagin | [128] |
| Polyphyllin D | [141] |
| Probucol | [142] |
| Prostaglandin E2 | [29] |
| Pyrvinium pamoate | [143, 144] |
| Radiocontrast agents | [145] |
| Retinoic acid | [146] |
| Ribavirin | [147] |
| Rifampicin | [148] |
| Rotenone | [149] |
| Salinomycin | [150] |
| Selenium (sodium selenite) | [151] |
| Shikonin | [126] |
| Silver ions | [152] |
| Sorafenib | [153] |
| Sphingomyelinase | [154] |
| Sphingosine | [155] |
| Sulindac sulfide | [156] |
| Sunitinib | [157] |
| Tannic acid | [94] |
| Tanshinone IIA | [158] |
| Thioridazine | [159] |
| Thrombospondin-1-receptor CD47 | [160] |
| Thymoquinone | [161] |
| Tin | [162] |
| Trans-cinnamaldehyde | [163] |
| Tyrosinase | [164] |
| Ursolic acid | [165] |
| Valinomycin | [166] |
| Sodium vanadate | [167] |
| Vitamin K(3) | [168] |
| Withaferin A | [169] |
| Zearalenone | [170] |
| Zinc | [171] |
Table 2.
Inhibitors of eryptosis.
| Inhibitors | References |
|---|---|
| Adenosine | [172] |
| Amitriptyline | [173] |
| Caffeine | [174] |
| Catecholamines (isoproterenol) | [175] |
| Chloride | [176] |
| D4476 | [143] |
| Dibutyryl-cGMP | [17] |
| Dithiothreitol | [5] |
| EIPA | [177] |
| EPO | [19] |
| Erythropoietin | [19, 178] |
| Flufenamic acid | [179] |
| Furosemide | [180] |
| Glutathione | [38] |
| 7-monohydroxyethylrutoside | [40] |
| N-acetylcysteine | [18, 20] |
| Naringin | [181] |
| NBQX/CNQX | [182] |
| Niflumic acid | [44] |
| Nitroprusside (NO-donor) | [17] |
| NPPB | [44] |
| Papanonoate (NO-donor) | [17] |
| P38 Inh III | [183] |
| Resveratrol | [184] |
| (R)-DRF053 | [143] |
| Salidroside | [39] |
| SB203580 | [183] |
| Staurosporine | [14] |
| Trolox | [31] |
| Urea | [185] |
| Vitamin E | [35–37] |
| Xanthohumol | [186] |
| Zidovudine | [187] |
The susceptibility to stimulation of eryptosis increases with erythrocyte age [20]. The enhanced spontaneous eryptosis of aged erythrocytes is abrogated by the antioxidant N-acetyl-L-cysteine [20]. The mechanism rendering aged erythrocytes particularly vulnerable to eryptosis remained ill-defined [20]. Young erythrocytes are particularly sensitive to suicidal death following decline of erythropoietin, a phenomenon termed neocytolysis [21].
Erythrocytes from newborns are relatively resistant to several triggers of eryptosis but are highly susceptible to eryptosis following oxidative stress [22–24]. The exquisite sensibility of fetal erythrocytes to oxidative stress is presumably instrumental for their removal following birth. The high oxygen affinity of fetal hemoglobin is favourable in the oxygen-depleted intrauterine environment but not after birth [25]. Thus, replacement of fetal erythrocytes by adult erythrocytes is mandatory for adequate oxygen transport after birth.
3. Signaling Regulating Eryptosis
A major trigger of eryptosis is the increase of cytosolic Ca2+ activity ([Ca2+]i) [6]. The increase of [Ca2+]i mainly results from Ca2+ entry through Ca2+-permeable unselective cation channels [26, 27], which are permeable to both Na+ and Ca2+ [28]. The channels are activated by prostaglandin E2 (PGE2) [29, 30]. Pharmacological inhibition of cyclooxygenase or phospholipase-A2 disrupts the activation of the channels following osmotic shock [29]. The Ca2+ permeable unselective cation channels are further activated by isosmotic replacement of NaCl with sorbitol [28] and by substitution of extracellular Cl− with gluconate, Br−, I−, or SCN− [28]. They are further activated by oxidative stress or defects of antioxidative defence [31–34], which thus trigger Ca2+ entry and eryptosis [5, 28]. Activation of the channels by oxidative stress is reversed by the reducing agent dithiothreitol [5]. Accordingly, erythrocytes are protected against oxidative stress by several antioxidants including vitamin E [35–37] glutathione [38], salidroside [39], 7-monohydroxyethylrutoside [40], trolox [31], or N-acetylcysteine [18, 20]. The channels involve the transient receptor potential channel TRPC6 [26]. The increase in [Ca2+]i and eryptosis following Cl− removal were thus blunted in erythrocytes from gene-targeted mice lacking TRPC6 [26].
The increase of [Ca2+]i following activation of the cation channels is followed by cell shrinkage due to activation of Ca2+-sensitive K+ channels [41, 42], cell membrane hyperpolarization, increase in the electrical driving force for Cl− exit, and the cellular loss of KCl with osmotically obliged water [43]. The Cl− exit requires erythrocyte Cl− channels [44], which are activated by oxidative stress [45, 46]. Cell shrinkage occurs as long as cellular K+ loss through the Ca2+-sensitive K+ channels outcasts the Na+ entry through the unselective cation channels. Sustained exit of K+ and entry of Na+ may lead to dissipation of respective ion gradients across the cell membrane, to cell membrane depolarization, and thus to entry of Cl− and cell swelling [47]. Excessive cell swelling jeopardises the integrity of the cell membrane and may trigger hemolysis [28, 47].
An increase of [Ca2+]i further stimulates cell membrane scrambling with breakdown of phosphatidylserine asymmetry of the erythrocyte cell membrane and translocation of phosphatidylserine to the erythrocyte surface [48]. Ca2+ sensitivity of the machinery leading to cell membrane scrambling is increased by ceramide [6]. Osmotic shock and a variety of further stimulators of eryptosis activate a phospholipase A2 with following formation platelet-activating factor, which in turn activates a ceramide producing sphingomyelinase [6].
Triggering cell membrane scrambling may involve but does not necessarily require activation of caspases [6, 103, 224], which are expressed in erythrocytes [225, 226], cleave the anion exchanger AE1 [225], and stimulate phosphatidylserine exposure of erythrocytes [227]. Caspase activation participates, for instance, in the triggering of eryptosis by leukotrienes [16] and α-lipoic acid [50]. The caspases are further activated by oxidative stress [228]. Ca2+ entry and Ca2+-dependent cell membrane scrambling do, however, not require activation of caspases [48, 76, 229].
Signaling influencing eryptosis further involves Janus-activated kinase JAK3 [222]. The kinase is phosphorylated at Tyr 980 and thus activated by energy depletion [222]. JAK3 activation contributes to the stimulation of cell membrane scrambling following energy depletion and the effect of energy depletion on eryptosis is blunted by pharmacological or genetic knockout of JAK3 [222].
Eryptosis following energy depletion is inhibited by the energy sensing AMP-activated kinase (AMPK) [27]. Even without induction of energy depletion, eryptosis is increased in AMPKα1-deficient mice [27]. The excessive eryptosis in AMPKα1-deficient mice leads to profound anemia and splenomegaly due to trapping of eryptotic erythrocytes in the spleen [27]. AMPK deficiency is paralleled by downregulation of p21-activated kinase 2 (PAK2) which presumably participates in the inhibition of eryptosis [111].
Pharmacological evidence points to a role of casein kinase 1α (CK1α) in the increase in [Ca2+]i and subsequent stimulation of eryptosis upon exposure of erythrocytes to oxidative stress or following energy depletion [143]. Pharmacological activation of CK1α opens cation channels and thus triggers Ca2+ influx into erythrocytes [144]. Osmotic shock activates p38 kinase in human erythrocytes [183] and pharmacological inhibition of p38 kinase blunts the eryptosis following osmotic shock [183]. Eryptosis is apparently inhibited by sorafenib- [153] and sunitinib- [157] sensitive kinases.
Eryptosis is further inhibited by cGMP-dependent protein kinase (cGKI) [217]. cGKI deficient mice suffer from severe anemia and splenomegaly due to excessive eryptosis [217]. cGKI deficiency is at least partially effective by increasing [Ca2+]i [217]. The kinase is stimulated by nitric oxide (NO) [230–233], a powerful inhibitor of eryptosis [17]. NO is stored in erythrocytes and may be released upon deoxygenation of hemoglobin [234–236]. Eryptosis is inhibited by NO-donors such as nitroprusside [17] at concentrations within or even below the range of those effective in nucleated cells [237, 238]. NO is at least partially effective downstream of Ca2+ as it protects against eryptosis induced by the Ca2+ ionophore ionomycin without appreciably affecting the ionomycin-induced increase of [Ca2+]i. NO blunts apoptosis of nucleated cells in part by caspase inhibition [239, 240]. However, caspases are not required for the stimulation of eryptosis following increase of [Ca2+]i [6]. Similar to its effect in nucleated cells [241–245] NO increases nitrosylation of enzymes, which are necessary for induction of cell membrane scrambling [17]. Conversely, protein S-nitrosylation is decreased by treatment of erythrocytes with ionomycin. Enzymes affected include the antiapoptotic enzyme thioredoxin, which is activated by S-nitrosylation [17, 242]. As shown in nucleated cells compromised thioredoxin activity enhances oxidative stress [242, 243]. The effect of NO is partially mimicked by dibutyryl-cGMP [17]. In contrast to low concentrations [17], excessive concentrations of the nitroprusside stimulate eryptosis presumably through oxidative stress [246–248]. NO release is particularly fast from HbF, which has thus a particular potency to counteract eryptosis and inducing vasodilation [249, 250]. In sickle cell disease increased levels of antisickling HbF counteract oxidative stress [251] and presumably eryptosis.
Collectively erythrocyte survival and eryptosis are regulated by an amazingly complex cellular machinery involving [Ca2+]i, ceramide, oxidative stress, caspases, nitroxide, and a variety of kinases. Most triggers of eryptosis are mainly effective by increasing [Ca2+]i and/or enhancing ceramide abundance in the cell membrane. Unlike in apoptosis of nucleated cells, caspases do not play a dominant role in the triggering of eryptosis. Survival of erythrocytes does require the activity of several kinases including AMPK and cGKI. Activation of other kinases, such as CK1α and JAK3, triggers eryptosis. The phosphorylation targets of the kinases required for the stimulation or inhibition of eryptosis are still ill-defined. Clearly, tremendous additional experimental effort is required for full understanding of the eryptotic machinery.
4. Significance of Eryptosis
Phosphatidylserine exposing erythrocytes are rapidly cleared from circulating blood [190] as phosphatidylserine binds to respective receptors of phagocytosing cells leading to engulfment and degradation of the affected erythrocytes [6]. As long as accelerated loss of eryptotic erythrocytes is matched by an equivalent increase of erythropoiesis, the number of circulating erythrocytes remains unaffected [6]. The enhanced turnover of erythrocytes is then reflected by an increased percentage of reticulocytes [6]. As soon as the loss of erythrocytes by eryptosis outcasts the formation of new erythrocytes, anemia develops [6].
Phosphatidylserine-exposing erythrocytes further adhere to the vascular wall by binding of phosphatidylserine to endothelial CXC-Motiv-Chemokin-16/Scavenger receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16/SR-PSOX) [252]. Further structures binding phosphatidylserine-exposing erythrocytes include the heparin-binding domain [253] of endothelial or subendothelial thrombospondin-1 (TSP) [254] or endothelial phosphatidylserine receptors [255]. As adherence of eryptotic erythrocytes to endothelial cells is virtually abrogated by silencing of endothelial CXCL16/SRPSO or by coating phosphatidylserine at the erythrocyte surface with annexin V, the erythrocytes bind apparently in large part by interaction of phosphatidylserine with endothelial CXCL16/SRPSO [252]. Phosphatidylserine exposing erythrocytes further adhere to blood platelets [252, 256]. The adherence of phosphatidylserine-exposing erythrocytes to vascular wall and to blood platelets compromises microcirculation [252, 257]. Phosphatidylserine-exposing erythrocytes may further trigger blood clotting and thus foster thrombosis [257].
5. Diseases Associated with Enhanced Eryptosis
Increased eryptosis contributes to the pathophysiology of diverse clinical disorders (Table 3) and is observed in a variety of knockout mice (Table 4). Eryptosis is augmented following dehydration, an effect paralleled by increase of 1,25(OH)2D3 plasma levels [188]. Along those lines, enhanced eryptosis is observed in Klotho deficient mice which suffer from excessive 1,25(OH)2D3 formation [218, 219]. The eryptosis in those mice is blunted by vitamin D deficient diet [218, 219]. Eryptosis is further triggered by severe phosphate depletion [193], an effect presumably due to compromised ATP generation.
Table 3.
Diseases associated with enhanced eryptosis.
| Diseases associated with accelerated eryptosis | References |
|---|---|
| Dehydration | [188] |
| Hypoxia | [189] |
| Iron deficiency | [190] |
| Metabolic syndrome | [191] |
| Diabetes mellitus | [192] |
| Phosphate depletion | [193] |
| Neocytolysis | [21] |
| Hemolytic anemia | [194] |
| Heart failure | [195] |
| Renal insufficiency | [19, 196, 197] |
| Hemolytic uremic syndrome | [198] |
| Sepsis | [199] |
| Mycoplasma infection | [200] |
| Malaria | [8, 85, 105, 201, 202] |
| Sickle cell disease | [189, 203–209] |
| Thalassemia | [203, 204, 206, 210, 211] |
| Glucose-6-phosphate dehydrogenase (G6PD) deficiency | [203, 212, 213] |
| Wilson's disease | [81] |
| AE1 mutation | [214] |
| GLUT1 mutation | [215] |
Table 4.
Altered eryptosis in gene-targeted mice.
| Targeted gene | References |
|---|---|
| Enhanced eryptosis | |
| GCLM-deficiency | [31] |
| Annexin 7 deficiency | [216] |
| Defective hemoglobin (sickle cell, thalassemia) | [205, 206] |
| cGMP-dependent protein kinase type I (cGKI) deficiency | [217] |
| AMP-activated protein kinase deficiency | [27] |
| Klotho deficiency | [218, 219] |
| EPO excess | [220] |
| AE1 deficiency | [221] |
| Reduced eryptosis | |
| PAF receptor deficiency | [133] |
| Jak3 deficiency | [222] |
| PDK1 deficiency | [223] |
| TRPC6 deficiency | [26] |
The percentage of phosphatidylserine-exposing erythrocytes is enhanced in iron deficiency which leads to decrease of cell volume and increase of cytosolic Ca2+ concentration [190]. The enhanced [Ca2+]i results from activation of the Ca2+ permeable unselective cation channels [190] and possibly from increased oxidative stress [258]. The enhanced eryptosis is paralleled by accelerated clearance of iron-deficient erythrocytes, which thus compounds the anemia [190].
Eryptosis is enhanced in malignancy [259]. Little is known about underlying mechanisms. The effect is compounded by cytostatic treatment, as a wide variety of cytostatic drugs do not only trigger apoptosis of tumor cells but as well suicidal death of erythrocytes (Table 1).
The percentage of phosphatidylserine-exposing erythrocytes in circulating blood is increased in diabetic patients [120, 224, 260]. Eryptosis is stimulated by methylglyoxal [120], which accumulates in hyperglycemia [261]. Methylglyoxal is at least partially effective by interference with glycolysis and by decrease of ATP and GSH concentrations [120]. Hyperglycemia imposes oxidative stress [262] with GSH depletion [262], increase of malondialdehyde concentrations [262], increased SOD activity [263], and erythrocyte lipid peroxidation [260]. Eryptosis has further been postulated to be enhanced in metabolic syndrome [191].
Eryptosis is further enhanced in chronic kidney disease (CKD) [19, 196], a condition invariably associated with anemia [264, 265]. The anemia of CKD is commonly attributed to lack of renal erythropoietin release and subsequent impairment of erythropoiesis [266, 267]. CKD is further commonly paralleled by iron deficiency [266, 268–271]. However, CKD leads to enhanced percentage of phosphatidylserine exposing erythrocytes [19, 196, 197] and accelerated clearance of circulating erythrocytes [272]. Accordingly, profound anemia occurs even in patients who are adequately treated with erythropoietin and thus have normal reticulocyte numbers in circulating blood [197]. Erythrocytes from CKD patients are exposed to oxidative stress [273]. The enhanced eryptosis in CKD patients is further partially due to hyperphosphatemia [139] and in part due to accumulation of uremic toxins, such as vanadate [167], acrolein [49], indoxyl sulfate [110], and methylglyoxal [120]. Acrolein and methylglyoxal may be partially effective by depleting the cells from glutathione [274].
Eryptosis is triggered by hemolytic uremic syndrome (HUS), characterized by hemolytic anemia with fragmented erythrocytes, thrombocytopenia, and acute renal failure [198]. The disorder may result from intoxication with bacterial shiga toxin or from complement activation due to lack of complement-inactivating factor H [198]. Plasma from HUS patients triggers in erythrocytes from healthy volunteers phosphatidylserine exposure, cell shrinkage, increase in cytosolic Ca2+ activity, and ceramide formation [198]. The effect of patient plasma on eryptosis is abolished by plasmapheresis or filtration at 30 kDa. Eryptosis is similarly triggered by activated complement [198]. Mechanisms involved include oxidative stress and lipid peroxidation [275]. Both are imposed by neutrophils [276].
Severe eryptosis is observed in sepsis [199]. Again, plasma from septic patients stimulates phosphatidylserine exposure, cell shrinkage, increase in cytosolic Ca2+ activity, and ceramide formation in erythrocytes from healthy individuals [199]. The effect is mimicked by exposure of erythrocytes to supernatant of pathogens and paralleled by enhanced sphingomyelinase activity [199]. Again, sepsis imposes oxidative stress [277], which may participate in the triggering of eryptosis.
Enhanced eryptosis is observed in Wilson's disease [81], a genetic disorder caused by Cu2+ accumulation due to inactivating mutations of Cu2+-secreting ATP7B [278]. The eryptosis is paralleled by mild anemia [278]. Eryptosis in Wilson's disease is in large part secondary to activation of acid sphingomyelinase with ceramide formation [81]. Moreover, erythrocytes from patients with Wilson's disease are exposed to oxidative stress [279] presumably due to copper-related oxidants [280].
A mutation of the anion exchanger AE1 in humans [214] or genetic knockout of the carrier in mice [221] is followed by opening of the Ca2+ permeable unselective cation channels in erythrocytes and thus by accelerated eryptosis. An extremely rare mutation of GLUT1 turns the carrier into a Ca2+ permeable unselective cation channel similarly enhancing eryptosis [215].
The susceptibility to eryptosis is increased in sickle cell anemia, thalassemia, and glucose 6-phosphate dehydrogenase deficiency [203, 281, 282]. Enhanced phosphatidylserine exposure fosters adhesion of the erythrocytes to endothelial cells [283–286]. Adhesion of sickle cells to the pulmonary vascular wall is fostered by activated neutrophils [283]. The binding of sickle cells to endothelial cells is decreased by annexin V indicating that it is largely due to endothelial adhesion of erythrocytic phosphatidylserine [287] but may, in addition, involve very late-activating antigen-4 (VLA-4) and CD36 [288]. HbF counteracts eryptosis and endothelial adhesion of sickle cells to endothelial cells [24, 251, 287, 289, 290]. Expression of HbF could be enhanced by hydroxyurea, which thus decreases sickling and thus vasoocclusive complications [251, 291]. HbF may, however, sensitize erythrocytes to oxidative stress-induced eryptosis (see Section 2), which may, at least in theory, limit the therapeutic benefit of hydroxyurea. Heterozygous carriers of the genetic disorders, such as heterozygous sickle cell carriers (HbA/S), do not spontaneously become suicidal and the respective individuals are virtually healthy [281]. Nevertheless, the erythrocytes are more sensitive to the eryptotic effects of oxidative stress [281].
The malaria pathogen Plasmodium falciparum imposes oxidative stress on the host erythrocytes and thus activates several ion channels in the erythrocyte cell membrane [292], including the oxidant-sensitive Ca2+-permeable erythrocyte cation channels [45, 46, 293]. The channels accomplish uptake of nutrients, Na+ and Ca2+ as well as disposal of waste products, and are thus required for intraerythrocytic survival of Plasmodium falciparum [8, 281, 292–294]. The Ca2+ entry following activation of the Ca2+-permeable cation channels leads, however, to stimulation of eryptosis [32–34] and subsequent clearance of the affected erythrocytes from circulating blood [295]. The pathogen sequesters Ca2+ thus slowing the increase of [Ca2+]i [296]. The pathogen further digests hemoglobin and exports the respective amino acids [297]. Plasmodium falciparum infection eventually leads to cell membrane scrambling with exposure of phosphatidylserine [105, 294, 298, 299] and subsequent phagocytotic clearance of pathogen-containing erythrocytes [300, 301]. The pathogen may further foster erythrocyte senescence contributing to the clearance of infected cells [301, 302]. Adherence of phosphatidylserine-exposing erythrocytes to endothelial cells further leads to tissue sequestration of Plasmodium-infected cells allowing partial immune evasion of pathogen-containing erythrocytes [303].
Upon infection, eryptosis is accelerated in erythrocytes from heterozygous carriers of the sickle-cell trait (HbA/S), beta-thalassemia-trait, homozygous Hb-C, and G6PD-deficiency thus leading to early clearance of infected erythrocytes, decreased parasitemia, and a relatively mild course of the disease [1, 203–206, 210, 212, 281, 300]. As shown for HbA/S erythrocytes [281], spontaneous eryptosis is in those individuals usually not clinically relevant. Following infection with P. falciparum, however, the formation of PGE2, Ca2+ permeability, phosphatidylserine exposure at the cell surface, and removal by macrophages are all augmented in HbA/S carriers [281]. The accelerated eryptosis in iron deficiency similarly confers some protection against a severe course of malaria [304]. Moreover, parasitemia and clinical course of malaria can be favourably influenced by pharmacological stimulation of eryptosis, for example, by lead [305], chlorpromazine [85], and inhibition of NO synthase by L-NAME [201]. Importantly, the pathogen should be unable to become resistant to therapeutic acceleration of eryptosis, which depends on host cell mechanisms and is thus not at the genetic disposal of the pathogen. Along those lines, the pathogen remained unable to overcome the relative resistance of sickle cell trait carriers to malaria.
6. Conclusions
Similar to apoptosis of nucleated cells, eryptosis is a physiological mechanism eliminating defective erythrocytes in order to prevent hemolysis and subsequent release of hemoglobin into circulating blood. Excessive eryptosis may, however, cause anemia and impede microcirculation. Orchestration of eryptosis involves Ca2+-permeable unselective cation channels, ceramide, caspases, and a variety of kinases including Janus-activated kinase 3, AMP-activated kinase, cGMP-dependent protein kinase, casein kinase 1α, p38 kinase, protein kinase C, and p21-activated kinase 2. The sensitivity to eryptosis is enhanced in aged erythrocytes. Fetal erythrocytes are particularly sensitive to oxidative stress. Eryptosis is triggered by a wide variety of xenobiotics and enhanced eryptosis is observed in several clinical conditions including dehydration, diabetes, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Drugs and nutrients inhibiting eryptosis may open novel therapeutic options in the treatment of anemia and deranged microcirculation. Eryptosis stimulating xenobiotics may at least in theory accelerate removal of Plasmodium infected erythrocytes and thus favourably influence the clinical course of malaria.
Acknowledgments
The authors acknowledge the meticulous preparation of the paper by Tanja Loch. Research in the authors' laboratory was supported by the Deutsche Forschungsgemeinschaft.
Abbreviations
- AE1:
Band 3 or anion exchanger 1
- AMPK:
AMP-activated kinase (AMPK)
- [Ca2+]i:
Cytosolic Ca2+ concentration
- CD36:
Cluster of differentiation 36
- cGK:
cGMP-dependent protein kinase
- CK1α:
Casein kinase 1α
- CXCL16/SR-PSOX:
CXC-Motiv-Chemokin-16/Scavenger receptor for phosphatidylserine and oxidized low density lipoprotein (SR-PSOX)
- GSH:
Reduced glutathione
- GCLM:
Glutamate cysteine ligase modulator
- G6PDH:
Glucose-6-phosphate dehydrogenase
- Hb:
Hemoglobin
- HUS:
Hemolytic uremic syndrome
- JAK3:
Janus-activated kinase JAK3
- L-NAME:
L-NG-Nitroarginine Methyl Ester
- NADPH:
Nicotinamide adenine dinucleotide phosphate
- NO:
Nitric oxide
- PAK2:
p21-activated kinase PAK2
- PGE2:
Prostaglandin E2
- ROS:
Reactive oxygen species
- SOD:
Cu, Zn-superoxide dismutase
- TRPC6:
Transient receptor potential channel 6
- TSP:
Thrombospondin-1
- VLA-4:
Very late-activating antigen-4.
Conflict of Interests
The authors declare that no competing financial interests exist. The sponsor(s) had no role in study design, collection, writing, analysis and interpretation of data, or in the decision to submit the paper for publication.
References
- 1.Arese P., Turrini F., Schwarzer E. Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cellular Physiology and Biochemistry. 2005;16(4–6):133–146. doi: 10.1159/000089839. [DOI] [PubMed] [Google Scholar]
- 2.Bosman G. J. C. G. M., Willekens F. L. A., Werre J. M. Erythrocyte aging: a more than superficial resemblance to apoptosis? Cellular Physiology and Biochemistry. 2005;16(1–3):1–8. doi: 10.1159/000087725. [DOI] [PubMed] [Google Scholar]
- 3.Kiefer C. R., Snyder L. M. Oxidation and erythrocyte senescence. Current Opinion in Hematology. 2000;7(2):113–116. doi: 10.1097/00062752-200003000-00007. [DOI] [PubMed] [Google Scholar]
- 4.Lutz H. U. Innate immune and non-immune mediators of erythrocyte clearance. Cellular and Molecular Biology. 2004;50(2):107–116. [PubMed] [Google Scholar]
- 5.Lang F., Lang K. S., Lang P. A., Huber S. M., Wieder T. Mechanisms and significance of eryptosis. Antioxidants & Redox Signaling. 2006;8(7-8):1183–1192. doi: 10.1089/ars.2006.8.1183. [DOI] [PubMed] [Google Scholar]
- 6.Lang E., Qadri S. M., Lang F. Killing me softly—suicidal erythrocyte death. International Journal of Biochemistry and Cell Biology. 2012;44(8):1236–1243. doi: 10.1016/j.biocel.2012.04.019. [DOI] [PubMed] [Google Scholar]
- 7.Çimen M. Y. B. Free radical metabolism in human erythrocytes. Clinica Chimica Acta. 2008;390(1-2):1–11. doi: 10.1016/j.cca.2007.12.025. [DOI] [PubMed] [Google Scholar]
- 8.Föller M., Bobbala D., Koka S., Huber S. M., Gulbins E., Lang F. Suicide for survival—death of infected erythrocytes as a host mechanism to survive malaria. Cellular Physiology and Biochemistry. 2009;24(3-4):133–140. doi: 10.1159/000233238. [DOI] [PubMed] [Google Scholar]
- 9.Nguyen D. B., Wagner-Britz L., Maia S., et al. Regulation of phosphatidylserine exposure in red blood cells. Cellular Physiology and Biochemistry. 2011;28(5):847–856. doi: 10.1159/000335798. [DOI] [PubMed] [Google Scholar]
- 10.Lang F., Qadri S. M. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purification. 2012;33(1–3):125–130. doi: 10.1159/000334163. [DOI] [PubMed] [Google Scholar]
- 11.Lang F., Abed M., Lang E., Föller M. Oxidative stress and suicidal erythrocyte death. Antioxidants & Redox Signaling. 2014;21(1):138–153. doi: 10.1089/ars.2013.5747. [DOI] [PubMed] [Google Scholar]
- 12.Lang F., Lang E., Fller M. Physiology and pathophysiology of eryptosis. Transfusion Medicine and Hemotherapy. 2012;39(5):308–314. doi: 10.1159/000342534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Lang K. S., Duranton C., Poehlmann H., et al. Cation channels trigger apoptotic death of erythrocytes. Cell Death and Differentiation. 2003;10(2):249–256. doi: 10.1038/sj.cdd.4401144. [DOI] [PubMed] [Google Scholar]
- 14.Klarl B. A., Lang P. A., Kempe D. S., et al. Protein kinase C mediates erythrocyte “programmed cell death” following glucose depletion. The American Journal of Physiology—Cell Physiology. 2006;290(1):C244–C253. doi: 10.1152/ajpcell.00283.2005. [DOI] [PubMed] [Google Scholar]
- 15.Kamp D., Sieberg T., Haest C. W. M. Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesiculation of erythrocytes. Biochemistry. 2001;40(31):9438–9446. doi: 10.1021/bi0107492. [DOI] [PubMed] [Google Scholar]
- 16.Foller M., Mahmud H., Gu S., et al. Participation of leukotriene C4 in the regulation of suicidal erythrocyte death. Journal of Physiology and Pharmacology. 2009;60(3):135–143. [PubMed] [Google Scholar]
- 17.Nicolay J. P., Liebig G., Niemoeller O. M., et al. Inhibition of suicidal erythrocyte death by nitric oxide. Pflugers Archiv European Journal of Physiology. 2008;456(2):293–305. doi: 10.1007/s00424-007-0393-1. [DOI] [PubMed] [Google Scholar]
- 18.Vota D. M., Crisp R. L., Nesse A. B., Vittori D. C. Oxidative stress due to aluminum exposure induces eryptosis which is prevented by erythropoietin. Journal of Cellular Biochemistry. 2012;113(5):1581–1589. doi: 10.1002/jcb.24026. [DOI] [PubMed] [Google Scholar]
- 19.Myssina S., Huber S. M., Birka C., et al. Inhibition of erythrocyte cation channels by erythropoietin. Journal of the American Society of Nephrology. 2003;14(11):2750–2757. doi: 10.1097/01.asn.0000093253.42641.c1. [DOI] [PubMed] [Google Scholar]
- 20.Ghashghaeinia M., Cluitmans J. C. A., Akel A., et al. The impact of erythrocyte age on eryptosis. British Journal of Haematology. 2012;157(5):606–614. doi: 10.1111/j.1365-2141.2012.09100.x. [DOI] [PubMed] [Google Scholar]
- 21.Rice L., Alfrey C. P. The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cellular Physiology and Biochemistry. 2005;15(6):245–250. doi: 10.1159/000087234. [DOI] [PubMed] [Google Scholar]
- 22.Hermle T., Shumilina E., Attanasio P., et al. Decreased cation channel activity and blunted channel-dependent eryptosis in neonatal erythrocytes. The American Journal of Physiology—Cell Physiology. 2006;291(4):C710–C717. doi: 10.1152/ajpcell.00631.2005. [DOI] [PubMed] [Google Scholar]
- 23.Jain S. K. Presence of phosphatidylserine in the outer membrane bilayer of newborn human erythrocytes. Biochemical and Biophysical Research Communications. 1986;136(3):914–920. doi: 10.1016/0006-291x(86)90419-5. [DOI] [PubMed] [Google Scholar]
- 24.Setty B. N. Y., Kulkarni S., Rao A. K., Stuart M. J. Fetal hemoglobin in sickle cell disease: relationship to erythrocyte phosphatidylserine exposure and coagulation activation. Blood. 2000;96(3):1119–1124. [PubMed] [Google Scholar]
- 25.Bell S. G. An introduction to hemoglobin physiology. Neonatal Network. 1999;18(2):9–15. doi: 10.1891/0730-0832.18.2.9. [DOI] [PubMed] [Google Scholar]
- 26.Föller M., Kasinathan R. S., Koka S., et al. TRPC6 contributes to the Ca2+ leak of human erythrocytes. Cellular Physiology and Biochemistry. 2008;21(1–3):183–192. doi: 10.1159/000113760. [DOI] [PubMed] [Google Scholar]
- 27.Föller M., Sopjani M., Koka S., et al. Regulation of erythrocyte survival by AMP-activated protein kinase. The FASEB Journal. 2009;23(4):1072–1080. doi: 10.1096/fj.08-121772. [DOI] [PubMed] [Google Scholar]
- 28.Duranton C., Huber S. M., Lang F. Oxidation induces a Cl−-dependent cation conductance in human red blood cells. Journal of Physiology. 2002;539(3):847–855. doi: 10.1113/jphysiol.2001.013040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Lang P. A., Kempe D. S., Myssina S., et al. PGE2 in the regulation of programmed erythrocyte death. Cell Death and Differentiation. 2005;12(5):415–428. doi: 10.1038/sj.cdd.4401561. [DOI] [PubMed] [Google Scholar]
- 30.Kaestner L., Bernhardt I. Ion channels in the human red blood cell membrane: their further investigation and physiological relevance. Bioelectrochemistry. 2002;55(1-2):71–74. doi: 10.1016/s1567-5394(01)00164-5. [DOI] [PubMed] [Google Scholar]
- 31.Föller M., Harris I. S., Elia A., et al. Functional significance of glutamate-cysteine ligase modifier for erythrocyte survival in vitro and in vivo. Cell Death and Differentiation. 2013;20(10):1350–1358. doi: 10.1038/cdd.2013.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Bilmen S., Aksu T. A., Gümüşlü S., Korgun D. K., Canatan D. Antioxidant capacity of G-6-PD-deficient erythrocytes. Clinica Chimica Acta. 2001;303(1-2):83–86. doi: 10.1016/S0009-8981(00)00384-3. [DOI] [PubMed] [Google Scholar]
- 33.Mavelli I., Ciriolo M. R., Rossi L., et al. Favism: a hemolytic disease associated with increased superoxide dismutase and decreased glutathione peroxidase activities in red blood cells. European Journal of Biochemistry. 1984;139(1):13–18. doi: 10.1111/j.1432-1033.1984.tb07969.x. [DOI] [PubMed] [Google Scholar]
- 34.Damonte G., Guida L., Sdraffa A., et al. Mechanisms of perturbation of erythrocyte calcium homeostasis in favism. Cell Calcium. 1992;13(10):649–658. doi: 10.1016/0143-4160(92)90075-4. [DOI] [PubMed] [Google Scholar]
- 35.Gökkuşu C., Mostafazadeh T. Changes of oxidative stress in various tissues by long-term administration of vitamin E in hypercholesterolemic rats. Clinica Chimica Acta. 2003;328(1-2):155–161. doi: 10.1016/S0009-8981(02)00388-1. [DOI] [PubMed] [Google Scholar]
- 36.Kobayashi S., Moriya H., Aso K., Ohtake T. Vitamin E-bonded hemodialyzer improves atherosclerosis associated with a rheological improvement of circulating red blood cells. Kidney International. 2003;63(5):1881–1887. doi: 10.1046/j.1523-1755.2003.00920.x. [DOI] [PubMed] [Google Scholar]
- 37.Jain S. K. Vitamin E and stabilization of membrane lipid organization in red blood cells with peroxidative damage. Biomedica Biochimica Acta. 1983;42(11-12):S43–S47. [PubMed] [Google Scholar]
- 38.Dumaswala U. J., Wilson M. J., Wu Y. L., et al. Glutathione loading prevents free radical injury in red blood cells after storage. Free Radical Research. 2000;33(5):517–529. doi: 10.1080/10715760000301061. [DOI] [PubMed] [Google Scholar]
- 39.Qian E. W., Ge D. T., Kong S.-K. Salidroside protects human erythrocytes against hydrogen peroxide-induced apoptosis. Journal of Natural Products. 2012;75(4):531–537. doi: 10.1021/np200555s. [DOI] [PubMed] [Google Scholar]
- 40.de Franceschi L., Turrini F., Honczarenko M., et al. In vivo reduction of erythrocyte oxidant stress in a murine model of β-thalassemia. Haematologica. 2004;89(11):1287–1298. [PubMed] [Google Scholar]
- 41.Bookchin R. M., Ortiz O. E., Lew V. L. Activation of calcium-dependent potassium channels in deoxygenated sickled red cells. Progress in Clinical and Biological Research. 1987;240:193–200. [PubMed] [Google Scholar]
- 42.Brugnara C., De Franceschi L., Alper S. L. Inhibition of Ca2+-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. Journal of Clinical Investigation. 1993;92(1):520–526. doi: 10.1172/jci116597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Lang P. A., Kaiser S., Myssina S., Wieder T., Lang F., Huber S. M. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. The American Journal of Physiology—Cell Physiology. 2003;285(6):C1553–C1560. doi: 10.1152/ajpcell.00186.2003. [DOI] [PubMed] [Google Scholar]
- 44.Myssina S., Lang P. A., Kempe D. S., et al. Cl -channel blockers NPPB and niflumic acid blunt Ca2+-induced erythrocyte ‘apoptosis’. Cellular Physiology and Biochemistry. 2004;14(4–6):241–248. doi: 10.1159/000080333. [DOI] [PubMed] [Google Scholar]
- 45.Huber S. M., Uhlemann A.-C., Gamper N. L., Duranton C., Kremsner P. G., Lang F. Plasmodium falciparum activates endogenous Cl− channels of human erythrocytes by membrane oxidation. The EMBO Journal. 2002;21(1-2):22–30. doi: 10.1093/emboj/21.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Tanneur V., Duranton C., Brand V. B., et al. Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB Journal. 2006;20(1):133–135. doi: 10.1096/fj.04-3371fje. [DOI] [PubMed] [Google Scholar]
- 47.Lang F., Busch G. L., Ritter M., et al. Functional significance of cell volume regulatory mechanisms. Physiological Reviews. 1998;78(1):247–306. doi: 10.1152/physrev.1998.78.1.247. [DOI] [PubMed] [Google Scholar]
- 48.Berg C. P., Engels I. H., Rothbart A., et al. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death and Differentiation. 2001;8(12):1197–1206. doi: 10.1038/sj.cdd.4400905. [DOI] [PubMed] [Google Scholar]
- 49.Ahmed M. S. E., Langer H., Abed M., Voelkl J., Lang F. The uremic toxin acrolein promotes suicidal erythrocyte death. Kidney and Blood Pressure Research. 2013;37(2-3):158–167. doi: 10.1159/000350141. [DOI] [PubMed] [Google Scholar]
- 50.Bhavsar S. K., Bobbala D., Xuan N. T., Föller M., Lang F. Stimulation of suicidal erythrocyte death by α-lipoic acid. Cellular Physiology and Biochemistry. 2010;26(6):859–868. doi: 10.1159/000323995. [DOI] [PubMed] [Google Scholar]
- 51.Niemoeller O. M., Kiedaisch V., Dreischer P., Wieder T., Lang F. Stimulation of eryptosis by aluminium ions. Toxicology and Applied Pharmacology. 2006;217(2):168–175. doi: 10.1016/j.taap.2006.09.001. [DOI] [PubMed] [Google Scholar]
- 52.Föller M., Geiger C., Mahmud H., Nicolay J., Lang F. Stimulation of suicidal erythrocyte death by amantadine. European Journal of Pharmacology. 2008;581(1-2):13–18. doi: 10.1016/j.ejphar.2007.11.051. [DOI] [PubMed] [Google Scholar]
- 53.Nicolay J. P., Bentzen P. J., Ghashghaeinia M., Wieder T., Lang F. Stimulation of erythrocyte cell membrane scrambling by amiodarone. Cellular Physiology and Biochemistry. 2007;20(6):1043–1050. doi: 10.1159/000110713. [DOI] [PubMed] [Google Scholar]
- 54.Mahmud H., Mauro D., Qadri S. M., Föller M., Lang F. Triggering of suicidal erythrocyte death by Amphotericin B. Cellular Physiology and Biochemistry. 2009;24(3-4):263–270. doi: 10.1159/000233251. [DOI] [PubMed] [Google Scholar]
- 55.Nicolay J. P., Gatz S., Liebig G., Gulbins E., Lang F. Amyloid induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2007;19(1–4):175–184. doi: 10.1159/000099205. [DOI] [PubMed] [Google Scholar]
- 56.Bentzen P. J., Lang F. Effect of anandamide on erythrocyte survival. Cellular Physiology and Biochemistry. 2007;20(6):1033–1042. doi: 10.1159/000110714. [DOI] [PubMed] [Google Scholar]
- 57.Attanasio P., Shumilina E., Hermle T., et al. Stimulation of eryptosis by anti-A IgG antibodies. Cellular Physiology and Biochemistry. 2007;20(5):591–600. doi: 10.1159/000107542. [DOI] [PubMed] [Google Scholar]
- 58.Zbidah M., Lupescu A., Jilani K., et al. Apigenin-induced suicidal erythrocyte death. Journal of Agricultural and Food Chemistry. 2012;60(1):533–538. doi: 10.1021/jf204107f. [DOI] [PubMed] [Google Scholar]
- 59.Malik A., Bissinger R., Calabrò S., Faggio C., Jilani K., Lang F. Aristolochic acid induced suicidal erythrocyte death. Kidney and Blood Pressure Research. 2014;39(5):408–419. doi: 10.1159/000368454. [DOI] [PubMed] [Google Scholar]
- 60.Biswas D., Banerjee M., Sen G., et al. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicology and Applied Pharmacology. 2008;230(1):57–66. doi: 10.1016/j.taap.2008.02.003. [DOI] [PubMed] [Google Scholar]
- 61.Mahmud H., Föller M., Lang F. Arsenic-induced suicidal erythrocyte death. Archives of Toxicology. 2009;83(2):107–113. doi: 10.1007/s00204-008-0338-2. [DOI] [PubMed] [Google Scholar]
- 62.Alzoubi K., Calabrò S., Bissinger R., Abed M., Faggio C., Lang F. Stimulation of suicidal erythrocyte death by artesunate. Cellular Physiology and Biochemistry. 2014;34(6):2232–2244. doi: 10.1159/000369666. [DOI] [PubMed] [Google Scholar]
- 63.Bobbala D., Koka S., Geiger C., Föller M., Huber S. M., Lang F. Azathioprine favourably influences the course of malaria. Malaria Journal. 2009;8(1, article 102) doi: 10.1186/1475-2875-8-102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Geiger C., Föller M., Herrlinger K. R., Lang F. Azathioprine-induced suicidal erythrocyte death. Inflammatory Bowel Diseases. 2008;14(8):1027–1032. doi: 10.1002/ibd.20433. [DOI] [PubMed] [Google Scholar]
- 65.Ghashghaeinia M., Cluitmans J. C., Toulany M., et al. Age sensitivity of NFκB abundance and programmed cell death in erythrocytes induced by NFκB inhibitors. Cellular Physiology and Biochemistry. 2013;32(4):801–813. doi: 10.1159/000354481. [DOI] [PubMed] [Google Scholar]
- 66.Ghashghaeinia M., Toulany M., Saki M., et al. The NFκB pathway inhibitors bay 11-7082 and parthenolide induce programmed cell death in anucleated erythrocytes. Cellular Physiology and Biochemistry. 2011;27(1):45–54. doi: 10.1159/000325204. [DOI] [PubMed] [Google Scholar]
- 67.Shumilina E., Kiedaisch V., Akkel A., et al. Stimulation of suicidal erythrocyte death by lipoxygenase inhibitor Bay-Y5884. Cellular Physiology and Biochemistry. 2006;18(4-5):233–242. doi: 10.1159/000097670. [DOI] [PubMed] [Google Scholar]
- 68.Qadri S. M., Kucherenko Y., Lang F. Beauvericin induced erythrocyte cell membrane scrambling. Toxicology. 2011;283(1):24–31. doi: 10.1016/j.tox.2011.01.023. [DOI] [PubMed] [Google Scholar]
- 69.Lang E., Jilani K., Zelenak C., et al. Stimulation of suicidal erythrocyte death by benzethonium. Cellular Physiology and Biochemistry. 2011;28(2):347–354. doi: 10.1159/000331751. [DOI] [PubMed] [Google Scholar]
- 70.Gao M., Lau P. M., Kong S. K. Mitochondrial toxin betulinic acid induces in vitro eryptosis in human red blood cells through membrane permeabilization. Archives of Toxicology. 2014;88(3):755–768. doi: 10.1007/s00204-013-1162-x. [DOI] [PubMed] [Google Scholar]
- 71.Braun M., Föller M., Gulbins E., Lang F. Eryptosis triggered by bismuth. BioMetals. 2009;22(3):453–460. doi: 10.1007/s10534-008-9180-5. [DOI] [PubMed] [Google Scholar]
- 72.Sopjani M., Föller M., Dreischer P., Lang F. Stimulation of eryptosis by cadmium ions. Cellular Physiology and Biochemistry. 2008;22(1–4):245–252. doi: 10.1159/000149802. [DOI] [PubMed] [Google Scholar]
- 73.Lang E., Qadri S. M., Jilani K., et al. Carbon monoxide-sensitive apoptotic death of erythrocytes. Basic and Clinical Pharmacology and Toxicology. 2012;111(5):348–355. doi: 10.1111/j.1742-7843.2012.00915.x. [DOI] [PubMed] [Google Scholar]
- 74.Jilani K., Lang F. Carmustine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins. 2013;5(4):703–716. doi: 10.3390/toxins5040703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Lupescu A., Bissinger R., Jilani K., Lang F. Triggering of suicidal erythrocyte death by celecoxib. Toxins. 2013;5(9):1543–1554. doi: 10.3390/toxins5091543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Lang K. S., Myssina S., Brand V., et al. Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death and Differentiation. 2004;11(2):231–243. doi: 10.1038/sj.cdd.4401311. [DOI] [PubMed] [Google Scholar]
- 77.Akel A., Hermle T., Niemoeller O. M., et al. Stimulation of erythrocyte phosphatidylserine exposure by chlorpromazine. European Journal of Pharmacology. 2006;532(1-2):11–17. doi: 10.1016/j.ejphar.2005.12.037. [DOI] [PubMed] [Google Scholar]
- 78.Lupescu A., Jilani K., Zelenak C., Zbidah M., Qadri S. M., Lang F. Hexavalent chromium-induced erythrocyte membrane phospholipid asymmetry. BioMetals. 2012;25(2):309–318. doi: 10.1007/s10534-011-9507-5. [DOI] [PubMed] [Google Scholar]
- 79.Niemoeller O. M., Mahmud H., Föller M., Wieder T., Lang F. Ciglitazone and 15d-PGJ2 induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2008;22(1–4):237–244. doi: 10.1159/000149801. [DOI] [PubMed] [Google Scholar]
- 80.Mahmud H., Föller M., Lang F. Suicidal erythrocyte death triggered by cisplatin. Toxicology. 2008;249(1):40–44. doi: 10.1016/j.tox.2008.04.003. [DOI] [PubMed] [Google Scholar]
- 81.Lang P. A., Schenck M., Nicolay J. P., et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nature Medicine. 2007;13(2):164–170. doi: 10.1038/nm1539. [DOI] [PubMed] [Google Scholar]
- 82.Lui J. C. K., Wong J. W. Y., Suen Y. K., Kwok T. T., Fung K. P., Kong S. K. Cordycepin induced eryptosis in mouse erythrocytes through a Ca2+-dependent pathway without caspase-3 activation. Archives of Toxicology. 2007;81(12):859–865. doi: 10.1007/s00204-007-0214-5. [DOI] [PubMed] [Google Scholar]
- 83.Bissinger R., Lupescu A., Zelenak C., Jilani K., Lang F. Stimulation of eryptosis by cryptotanshinone. Cellular Physiology and Biochemistry. 2014;34(2):432–442. doi: 10.1159/000363012. [DOI] [PubMed] [Google Scholar]
- 84.Bentzen P. J., Lang E., Lang F. Curcumin induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2007;19(1–4):153–164. doi: 10.1159/000099203. [DOI] [PubMed] [Google Scholar]
- 85.Bobbala D., Koka S., Lang C., Boini K. M., Huber S. M., Lang F. Effect of cyclosporine on parasitemia and survival of Plasmodium berghei infected mice. Biochemical and Biophysical Research Communications. 2008;376(3):494–498. doi: 10.1016/j.bbrc.2008.09.005. [DOI] [PubMed] [Google Scholar]
- 86.Niemoeller O. M., Akel A., Lang P. A., et al. Induction of eryptosis by cyclosporine. Naunyn-Schmiedeberg's Archives of Pharmacology. 2006;374(1):41–49. doi: 10.1007/s00210-006-0099-5. [DOI] [PubMed] [Google Scholar]
- 87.Mandal D., Mazumder A., Das P., Kundu M., Basu J. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. Journal of Biological Chemistry. 2005;280(47):39460–39467. doi: 10.1074/jbc.M506928200. [DOI] [PubMed] [Google Scholar]
- 88.Abed M., Zoubi K. A., Theurer M., Lang F. Effect of dermaseptin on erythrocytes. Basic and Clinical Pharmacology and Toxicology. 2013;113(5):347–352. doi: 10.1111/bcpt.12096. [DOI] [PubMed] [Google Scholar]
- 89.Qadri S. M., Kucherenko Y., Zelenak C., Jilani K., Lang E., Lang F. Dicoumarol activates Ca2+-permeable cation channels triggering erythrocyte cell membrane scrambling. Cellular Physiology and Biochemistry. 2011;28(5):857–864. doi: 10.1159/000335800. [DOI] [PubMed] [Google Scholar]
- 90.Ghashghaeinia M., Bobbala D., Wieder T., et al. Targeting glutathione by dimethylfumarate protects against experimental malaria by enhancing erythrocyte cell membrane scrambling. The American Journal of Physiology—Cell Physiology. 2010;299(4):C791–C804. doi: 10.1152/ajpcell.00014.2010. [DOI] [PubMed] [Google Scholar]
- 91.Jilani K., Qadri S. M., Lang E., et al. Stimulation of erythrocyte phospholipid scrambling by enniatin A. Molecular Nutrition and Food Research. 2011;55(supplement 2):S294–S302. doi: 10.1002/mnfr.201100156. [DOI] [PubMed] [Google Scholar]
- 92.Bissinger R., Modicano P., Frauenfeld L., et al. Estramustine-induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2013;32(5):1426–1436. doi: 10.1159/000356580. [DOI] [PubMed] [Google Scholar]
- 93.Gao M., Wong S. Y., Lau P. M., Kong S. K. Ferutinin induces in vitro eryptosis/erythroptosis in human erythrocytes through membrane permeabilization and calcium influx. Chemical Research in Toxicology. 2013;26(8):1218–1228. doi: 10.1021/tx400127w. [DOI] [PubMed] [Google Scholar]
- 94.Jilani K., Enkel S., Bissinger R., Almilaji A., Abed M., Lang F. Fluoxetine induced suicidal erythrocyte death. Toxins. 2013;5(7):1230–1243. doi: 10.3390/toxins5071230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Eberhard M., Ferlinz K., Alizzi K., et al. FTY720-induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2010;26(4-5):761–766. doi: 10.1159/000322343. [DOI] [PubMed] [Google Scholar]
- 96.Zbidah M., Lupescu A., Jilani K., Lang F. Stimulation of suicidal erythrocyte death by fumagillin. Basic and Clinical Pharmacology and Toxicology. 2013;112(5):346–351. doi: 10.1111/bcpt.12033. [DOI] [PubMed] [Google Scholar]
- 97.Lupescu A., Jilani K., Zelenak C., Zbidah M., Shaik N., Lang F. Induction of programmed erythrocyte death by gambogic acid. Cellular Physiology and Biochemistry. 2012;30(2):428–438. doi: 10.1159/000339036. [DOI] [PubMed] [Google Scholar]
- 98.Lupescu A., Bissinger R., Warsi J., Jilani K., Lang F. Stimulation of erythrocyte cell membrane scrambling by gedunin. Cellular Physiology and Biochemistry. 2014;33(6):1838–1848. doi: 10.1159/000362962. [DOI] [PubMed] [Google Scholar]
- 99.Jilani K., Qadri S. M., Lang F. Geldanamycin-induced phosphatidylserine translocation in the erythrocyte membrane. Cellular Physiology and Biochemistry. 2013;32(6):1600–1609. doi: 10.1159/000356596. [DOI] [PubMed] [Google Scholar]
- 100.Kucherenko Y. V., Bhavsar S. K., Grischenko V. I., Fischer U. R., Huber S. M., Lang F. Increased cation conductance in human erythrocytes artificially aged by glycation. Journal of Membrane Biology. 2010;235(3):177–189. doi: 10.1007/s00232-010-9265-2. [DOI] [PubMed] [Google Scholar]
- 101.Head D. J., Lee Z. E., Poole J., Avent N. D. Expression of phosphatidylserine (PS) on wild-type and Gerbich variant erythrocytes following glycophorin-C (GPC) ligation. British Journal of Haematology. 2005;129(1):130–137. doi: 10.1111/j.1365-2141.2005.05407.x. [DOI] [PubMed] [Google Scholar]
- 102.Sopjani M., Föller M., Lang F. Gold stimulates Ca2+ entry into and subsequent suicidal death of erythrocytes. Toxicology. 2008;244(2-3):271–279. doi: 10.1016/j.tox.2007.12.001. [DOI] [PubMed] [Google Scholar]
- 103.Lau I. P., Chen H., Wang J., et al. In vitro effect of CTAB-and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology. 2012;6(8):847–856. doi: 10.3109/17435390.2011.625132. [DOI] [PubMed] [Google Scholar]
- 104.Zbidah M., Lupescu A., Shaik N., Lang F. Gossypol-induced suicidal erythrocyte death. Toxicology. 2012;302(2-3):101–105. doi: 10.1016/j.tox.2012.09.010. [DOI] [PubMed] [Google Scholar]
- 105.Böttger E., Multhoff G., Kun J. F. J., Esen M. Plasmodium falciparum-infected erythrocytes induce granzyme B by NK cells through expression of host-Hsp70. PLoS ONE. 2012;7(3) doi: 10.1371/journal.pone.0033774.e33774 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Gatidis S., Föller M., Lang F. Hemin-induced suicidal erythrocyte death. Annals of Hematology. 2009;88(8):721–726. doi: 10.1007/s00277-009-0697-7. [DOI] [PubMed] [Google Scholar]
- 107.Zhang R., Xiang Y., Ran Q., et al. Involvement of calcium, reactive oxygen species, and ATP in hexavalent chromium-induced damage in red blood cells. Cellular Physiology and Biochemistry. 2014;34(5):1780–1791. doi: 10.1159/000366378. [DOI] [PubMed] [Google Scholar]
- 108.Lang P. A., Kaiser S., Myssina S., et al. Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes. Cellular Microbiology. 2004;6(4):391–400. doi: 10.1111/j.1462-5822.2004.00369.x. [DOI] [PubMed] [Google Scholar]
- 109.Zbidah M., Lupescu A., Herrmann T., et al. Effect of honokiol on erythrocytes. Toxicology in Vitro. 2013;27(6):1737–1745. doi: 10.1016/j.tiv.2013.05.003. [DOI] [PubMed] [Google Scholar]
- 110.Ahmed M. S. E., Abed M., Voelkl J., Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrology. 2013;14, article 244 doi: 10.1186/1471-2369-14-244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Zelenak C., Föller M., Velic A., et al. Proteome analysis of erythrocytes lacking AMP-activated protein kinase reveals a role of PAK2 kinase in eryptosis. Journal of Proteome Research. 2011;10(4):1690–1697. doi: 10.1021/pr101004j. [DOI] [PubMed] [Google Scholar]
- 112.Shaik N., Alhourani E., Bosc A., et al. Stimulation of suicidal erythrocyte death by ipratropium bromide. Cellular Physiology and Biochemistry. 2012;30(6):1517–1525. doi: 10.1159/000343339. [DOI] [PubMed] [Google Scholar]
- 113.Kempe D. S., Lang P. A., Eisele K., et al. Stimulation of erythrocyte phosphatidylserine exposure by lead ions. The American Journal of Physiology—Cell Physiology. 2005;288(2):C396–C402. doi: 10.1152/ajpcell.00115.2004. [DOI] [PubMed] [Google Scholar]
- 114.Wang K., Mahmud H., Föller M., et al. Lipopeptides in the triggering of erythrocyte cell membrane scrambling. Cellular Physiology and Biochemistry. 2008;22(5-6):381–386. doi: 10.1159/000187116. [DOI] [PubMed] [Google Scholar]
- 115.Föller M., Shumilina E., Lam R. S., et al. Induction of suicidal erythrocyte death by listeriolysin from Listeria monocytogenes . Cellular Physiology and Biochemistry. 2007;20(6):1051–1060. doi: 10.1159/000110715. [DOI] [PubMed] [Google Scholar]
- 116.Nicolay J. P., Gatz S., Lang F., Lang U. E. Lithium-induced suicidal erythrocyte death. Journal of Psychopharmacology. 2010;24(10):1533–1539. doi: 10.1177/0269881109102631. [DOI] [PubMed] [Google Scholar]
- 117.Alzoubi K., Alktifan B., Oswald G., Fezai M., Abed M., Lang F. Breakdown of phosphatidylserine asymmetry following treatment of erythrocytes with lumefantrine. Toxins. 2014;6(2):650–664. doi: 10.3390/toxins6020650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Eisele K., Lang P. A., Kempe D. S., et al. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions. Toxicology and Applied Pharmacology. 2006;210(1-2):116–122. doi: 10.1016/j.taap.2005.07.022. [DOI] [PubMed] [Google Scholar]
- 119.Mahmud H., Föller M., Lang F. Stimulation of erythrocyte cell membrane scrambling by methyldopa. Kidney and Blood Pressure Research. 2008;31(5):299–306. doi: 10.1159/000153250. [DOI] [PubMed] [Google Scholar]
- 120.Nicolay J. P., Schneider J., Niemoeller O. M., et al. Stimulation of suicidal erythrocyte death by methylglyoxal. Cellular Physiology and Biochemistry. 2006;18(4-5):223–232. doi: 10.1159/000097669. [DOI] [PubMed] [Google Scholar]
- 121.Munoz C., Alzoubi K., Jacobi J., Abed M., Lang F. Effect of miltefosine on erythrocytes. Toxicology in Vitro. 2013;27(6):1913–1919. doi: 10.1016/j.tiv.2013.06.010. [DOI] [PubMed] [Google Scholar]
- 122.Jacobi J., Lang E., Bissinger R., et al. Stimulation of erythrocyte cell membrane scrambling by mitotane. Cellular Physiology and Biochemistry. 2014;33(5):1516–1526. doi: 10.1159/000358715. [DOI] [PubMed] [Google Scholar]
- 123.Arnold M., Bissinger R., Lang F. Mitoxantrone-induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2014;34(5):1756–1767. doi: 10.1159/000366376. [DOI] [PubMed] [Google Scholar]
- 124.Bhavsar S. K., Eberhard M., Bobbala D., Lang F. Monensin induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2010;25(6):745–752. doi: 10.1159/000315094. [DOI] [PubMed] [Google Scholar]
- 125.Arnold M., Lang E., Modicano P., et al. Effect of nitazoxanide on erythrocytes. Basic and Clinical Pharmacology and Toxicology. 2014;114(5):421–426. doi: 10.1111/bcpt.12171. [DOI] [PubMed] [Google Scholar]
- 126.Lupescu A., Bissinger R., Herrmann T., Oswald G., Jilani K., Lang F. Induction of suicidal erythrocyte death by novobiocin. Cellular Physiology and Biochemistry. 2014;33(3):670–680. doi: 10.1159/000358643. [DOI] [PubMed] [Google Scholar]
- 127.Malik A., Bissinger R., Jilani K., Lang F. Stimulation of erythrocyte cell membrane scrambling by nystatin. Basic & Clinical Pharmacology & Toxicology. 2015;116(1):47–52. doi: 10.1111/bcpt.12279. [DOI] [PubMed] [Google Scholar]
- 128.Jilani K., Lupescu A., Zbidah M., Abed M., Shaik N., Lang F. Enhanced apoptotic death of erythrocytes induced by the mycotoxin ochratoxin A. Kidney and Blood Pressure Research. 2012;36(1):107–118. doi: 10.1159/000341488. [DOI] [PubMed] [Google Scholar]
- 129.Jilani K., Qadri S. M., Zelenak C., Lang F. Stimulation of suicidal erythrocyte death by oridonin. Archives of Biochemistry and Biophysics. 2011;511(1-2):14–20. doi: 10.1016/j.abb.2011.05.001. [DOI] [PubMed] [Google Scholar]
- 130.Tesoriere L., Attanzio A., Allegra M., Cilla A., Gentile C., Livrea M. A. Oxysterol mixture in hypercholesterolemia-relevant proportion causes oxidative stress-dependent eryptosis. Cellular Physiology and Biochemistry. 2014;34(4):1075–1089. doi: 10.1159/000366322. [DOI] [PubMed] [Google Scholar]
- 131.Koka S., Bobbala D., Lang C., Boini K. M., Huber S. M., Lang F. Influence of paclitaxel on parasitemia and survival of Plasmodium berghei infected mice. Cellular Physiology and Biochemistry. 2009;23(1–3):191–198. doi: 10.1159/000204107. [DOI] [PubMed] [Google Scholar]
- 132.Lang P. A., Huober J., Bachmann C., et al. Stimulation of erythrocyte phosphatidylserine exposure by paclitaxel. Cellular Physiology and Biochemistry. 2006;18(1–3):151–154. doi: 10.1159/000095190. [DOI] [PubMed] [Google Scholar]
- 133.Lang P. A., Kempe D. S., Tanneur V., et al. Stimulation of erythrocyte ceramide formation by platelet-activating factor. Journal of Cell Science. 2005;118(6):1233–1243. doi: 10.1242/jcs.01730. [DOI] [PubMed] [Google Scholar]
- 134.Lupescu A., Jilani K., Zbidah M., Lang F. Patulin-induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2013;32(2):291–299. doi: 10.1159/000354437. [DOI] [PubMed] [Google Scholar]
- 135.Alzoubi K., Honisch S., Abed M., Lang F. Triggering of suicidal erythrocyte death by penta-O-galloyl-beta-D-glucose. Toxins. 2014;6(1):54–65. doi: 10.3390/toxins6010054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Abed M., Towhid S. T., Pakladok T., et al. Effect of bacterial peptidoglycan on erythrocyte death and adhesion to endothelial cells. International Journal of Medical Microbiology. 2013;303(4):182–189. doi: 10.1016/j.ijmm.2013.01.004. [DOI] [PubMed] [Google Scholar]
- 137.Föller M., Biswas R., Mahmud H., et al. Effect of peptidoglycans on erythrocyte survival. International Journal of Medical Microbiology. 2009;299(1):75–85. doi: 10.1016/j.ijmm.2008.05.012. [DOI] [PubMed] [Google Scholar]
- 138.Bissinger R., Fischer S., Jilani K., Lang F. Stimulation of erythrocyte death by phloretin. Cellular Physiology and Biochemistry. 2014;34(6):2256–2265. doi: 10.1159/000369668. [DOI] [PubMed] [Google Scholar]
- 139.Voelkl J., Alzoubi K., Mamar A.-K., Ahmed M. S. E., Abed M., Lang F. Stimulation of suicidal erythrocyte death by increased extracellular phosphate concentrations. Kidney and Blood Pressure Research. 2014;38(1):42–51. doi: 10.1159/000355752. [DOI] [PubMed] [Google Scholar]
- 140.Eberhard M., Föller M., Lang F. Effect of phytic acid on suicidal erythrocyte death. Journal of Agricultural and Food Chemistry. 2010;58(3):2028–2033. doi: 10.1021/jf903666b. [DOI] [PubMed] [Google Scholar]
- 141.Gao M., Cheung K. L., Lau I. P., et al. Polyphyllin D induces apoptosis in human erythrocytes through Ca2+ rise and membrane permeabilization. Archives of Toxicology. 2012;86(5):741–752. doi: 10.1007/s00204-012-0808-4. [DOI] [PubMed] [Google Scholar]
- 142.Shaik N., Lupescu A., Lang F. Inhibition of suicidal erythrocyte death by probucol. Journal of Cardiovascular Pharmacology. 2013;61(2):120–126. doi: 10.1097/FJC.0b013e3182798abc. [DOI] [PubMed] [Google Scholar]
- 143.Zelenak C., Eberhard M., Jilani K., Qadri S. M., MacEk B., Lang F. Protein kinase CK1α regulates erythrocyte survival. Cellular Physiology and Biochemistry. 2012;29(1-2):171–180. doi: 10.1159/000337598. [DOI] [PubMed] [Google Scholar]
- 144.Kucherenko Y., Zelenak C., Eberhard M., Qadri S. M., Lang F. Effect of casein kinase 1alpha activator pyrvinium pamoate on erythrocyte ion channels. Cellular Physiology and Biochemistry. 2012;30(2):407–417. doi: 10.1159/000339034. [DOI] [PubMed] [Google Scholar]
- 145.Föller M., Sopjani M., Schlemmer H. P., Claussen C. D., Lang F. Triggering of suicidal erythrocyte death by radiocontrast agents. European Journal of Clinical Investigation. 2009;39(7):576–583. doi: 10.1111/j.1365-2362.2009.02140.x. [DOI] [PubMed] [Google Scholar]
- 146.Niemoeller O. M., Föller M., Lang C., Huber S. M., Lang F. Retinoic acid induced suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2008;21(1–3):193–202. doi: 10.1159/000113761. [DOI] [PubMed] [Google Scholar]
- 147.Oswald G., Alzoubi K., Abed M., Lang F. Stimulation of suicidal erythrocyte death by ribavirin. Basic & Clinical Pharmacology & Toxicology. 2014;114(4):311–317. doi: 10.1111/bcpt.12165. [DOI] [PubMed] [Google Scholar]
- 148.Abed M., Towhid S. T., Shaik N., Lang F. Stimulation of suicidal death of erythrocytes by rifampicin. Toxicology. 2012;302(2-3):123–128. doi: 10.1016/j.tox.2012.10.006. [DOI] [PubMed] [Google Scholar]
- 149.Lupescu A., Jilani K., Zbidah M., Lang F. Induction of apoptotic erythrocyte death by rotenone. Toxicology. 2012;300(3):132–137. doi: 10.1016/j.tox.2012.06.007. [DOI] [PubMed] [Google Scholar]
- 150.Bissinger R., Malik A., Jilani K., Lang F. Triggering of erythrocyte cell membrane scrambling by salinomycin. Basic & Clinical Pharmacology & Toxicology. 2014;115(5):396–402. doi: 10.1111/bcpt.12250. [DOI] [PubMed] [Google Scholar]
- 151.Sopjani M., Föller M., Gulbins E., Lang F. Suicidal death of erythrocytes due to selenium-compounds. Cellular Physiology and Biochemistry. 2008;22(5-6):387–394. doi: 10.1159/000185452. [DOI] [PubMed] [Google Scholar]
- 152.Sopjani M., Föller M., Haendeler J., Götz F., Lang F. Silver ion-induced suicidal erythrocyte death. Journal of Applied Toxicology. 2009;29(6):531–536. doi: 10.1002/jat.1438. [DOI] [PubMed] [Google Scholar]
- 153.Lupescu A., Shaik N., Jilani K., et al. Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: an in vivo and in vitro study. Cellular Physiology and Biochemistry. 2012;30(4):876–888. doi: 10.1159/000341465. [DOI] [PubMed] [Google Scholar]
- 154.Abed M., Towhid S. T., Mia S., et al. Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. American Journal of Physiology—Cell Physiology. 2012;303(9):C991–C999. doi: 10.1152/ajpcell.00239.2012. [DOI] [PubMed] [Google Scholar]
- 155.Qadri S. M., Bauer J., Zelenak C., et al. Sphingosine but not sphingosine-1-phosphate stimulates suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2011;28(2):339–346. doi: 10.1159/000331750. [DOI] [PubMed] [Google Scholar]
- 156.Zbidah M., Lupescu A., Yang W., et al. Sulindac sulfde—induced stimulation of eryptosis. Cellular Physiology and Biochemistry. 2012;30(4):1072–1082. doi: 10.1159/000341483. [DOI] [PubMed] [Google Scholar]
- 157.Shaik N., Lupescu A., Lang F. Sunitinib-sensitive suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2012;30(3):512–522. doi: 10.1159/000341434. [DOI] [PubMed] [Google Scholar]
- 158.Zelenak C., Pasham V., Jilani K., et al. Tanshinone IIA stimulates erythrocyte phosphatidylserine exposure. Cellular Physiology and Biochemistry. 2012;30(1):282–294. doi: 10.1159/000339064. [DOI] [PubMed] [Google Scholar]
- 159.Lang E., Modicano P., Arnold M., et al. Effect of thioridazine on erythrocytes. Toxins. 2013;5(10):1918–1931. doi: 10.3390/toxins5101918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Head D. J., Lee Z. E., Swallah M. M., Avent N. D. Ligation of CD47 mediates phosphatidylserine expression on erythrocytes and a concomitant loss of viability in vitro. British Journal of Haematology. 2005;130(5):788–790. doi: 10.1111/j.1365-2141.2005.05668.x. [DOI] [PubMed] [Google Scholar]
- 161.Qadri S. M., Mahmud H., Föller M., Lang F. Thymoquinone-induced suicidal erythrocyte death. Food and Chemical Toxicology. 2009;47(7):1545–1549. doi: 10.1016/j.fct.2009.03.037. [DOI] [PubMed] [Google Scholar]
- 162.Nguyen T. T., Föller M., Lang F. Tin triggers suicidal death of erythrocytes. Journal of Applied Toxicology. 2009;29(1):79–83. doi: 10.1002/jat.1390. [DOI] [PubMed] [Google Scholar]
- 163.Theurer M., Shaik N., Lang F. Stimulation of suicidal erythrocyte death by trans-cinnamaldehyde. Phytomedicine. 2013;20(12):1119–1123. doi: 10.1016/j.phymed.2013.05.006. [DOI] [PubMed] [Google Scholar]
- 164.Frauenfeld L., Alzoubi K., Abed M., Lang F. Stimulation of erythrocyte cell membrane scrambling by mushroom tyrosinase. Toxins. 2014;6(3):1096–1108. doi: 10.3390/toxins6031096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Jilani K., Abed M., Zelenak C., Lang E., Qadri S. M., Lang F. Triggering of erythrocyte cell membrane scrambling by ursolic acid. Journal of Natural Products. 2011;74(10):2181–2186. doi: 10.1021/np2005133. [DOI] [PubMed] [Google Scholar]
- 166.Schneider J., Nicolay J. P., Föller M., Wieder T., Lang F. Suicidal erythrocyte death following cellular K+ loss. Cellular Physiology and Biochemistry. 2007;20(1–4):35–44. doi: 10.1159/000104151. [DOI] [PubMed] [Google Scholar]
- 167.Föller M., Sopjani M., Mahmud H., Lang F. Vanadate-induced suicidal erythrocyte death. Kidney and Blood Pressure Research. 2008;31(2):87–93. doi: 10.1159/000119704. [DOI] [PubMed] [Google Scholar]
- 168.Qadri S. M., Eberhard M., Mahmud H., Föller M., Lang F. Stimulation of ceramide formation and suicidal erythrocyte death by vitamin K3 (menadione) European Journal of Pharmacology. 2009;623(1–3):10–13. doi: 10.1016/j.ejphar.2009.09.011. [DOI] [PubMed] [Google Scholar]
- 169.Jilani K., Lupescu A., Zbidah M., Shaik N., Lang F. Withaferin A-stimulated Ca2+ entry, ceramide formation and suicidal death of erythrocytes. Toxicology in Vitro. 2013;27(1):52–58. doi: 10.1016/j.tiv.2012.09.004. [DOI] [PubMed] [Google Scholar]
- 170.Jilani K., Lang F. Ca2+-dependent suicidal erythrocyte death following zearalenone exposure. Archives of Toxicology. 2013;87(10):1821–1828. doi: 10.1007/s00204-013-1037-1. [DOI] [PubMed] [Google Scholar]
- 171.Kiedaisch V., Akel A., Niemoeller O. M., Wieder T., Lang F. Zinc-induced suicidal erythrocyte death. American Journal of Clinical Nutrition. 2008;87(5):1530–1534. doi: 10.1093/ajcn/87.5.1530. [DOI] [PubMed] [Google Scholar]
- 172.Niemoeller O. M., Bentzen P. J., Lang E., Lang F. Adenosine protects against suicidal erythrocyte death. Pflügers Archiv. 2007;454(3):427–439. doi: 10.1007/s00424-007-0218-2. [DOI] [PubMed] [Google Scholar]
- 173.Brand V., Koka S., Lang C., et al. Influence of amitriptyline on eryptosis, parasitemia and survival of Plasmodium berghei-infected mice. Cellular Physiology and Biochemistry. 2008;22(5-6):405–412. doi: 10.1159/000185482. [DOI] [PubMed] [Google Scholar]
- 174.Floride E., Föller M., Ritter M., Lang F. Caffeine inhibits suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2008;22(1–4):253–260. doi: 10.1159/000149803. [DOI] [PubMed] [Google Scholar]
- 175.Lang P. A., Kempe D. S., Akel A., et al. Inhibition of erythrocyte 'apoptosis' by catecholamines. Naunyn-Schmiedeberg's Archives of Pharmacology. 2005;372(3):228–235. doi: 10.1007/s00210-005-0009-2. [DOI] [PubMed] [Google Scholar]
- 176.Huber S. M., Gamper N., Lang F. Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pflugers Archiv. 2001;441(4):551–558. doi: 10.1007/s004240000456. [DOI] [PubMed] [Google Scholar]
- 177.Lang K. S., Myssina S., Tanneur V., et al. Inhibition of erythrocyte cation channels and apoptosis by ethylisopropylamiloride. Naunyn-Schmiedeberg's Archives of Pharmacology. 2003;367(4):391–396. doi: 10.1007/s00210-003-0701-z. [DOI] [PubMed] [Google Scholar]
- 178.Vota D. M., Maltaneri R. E., Wenker S. D., Nesse A. B., Vittori D. C. Differential erythropoietin action upon cells induced to eryptosis by different agents. Cell Biochemistry and Biophysics. 2013;65(2):145–157. doi: 10.1007/s12013-012-9408-4. [DOI] [PubMed] [Google Scholar]
- 179.Kasinathan R. S., Föller M., Koka S., Huber S. M., Lang F. Inhibition of eryptosis and intraerythrocytic growth of Plasmodium falciparum by flufenamic acid. Naunyn-Schmiedeberg's Archives of Pharmacology. 2007;374(4):255–264. doi: 10.1007/s00210-006-0122-x. [DOI] [PubMed] [Google Scholar]
- 180.Kucherenko Y. V., Lang F. Inhibitory effect of furosemide on non-selective voltage-independent cation channels in human erythrocytes. Cellular Physiology and Biochemistry. 2012;30(4):863–875. doi: 10.1159/000341464. [DOI] [PubMed] [Google Scholar]
- 181.Shaik N., Zbidah M., Lang F. Inhibition of Ca2+ entry and suicidal erythrocyte death by naringin. Cellular Physiology and Biochemistry. 2012;30(3):678–686. doi: 10.1159/000341448. [DOI] [PubMed] [Google Scholar]
- 182.Föller M., Mahmud H., Gu S., et al. Modulation of suicidal erythrocyte cation channels by an AMPA antagonist. Journal of Cellular and Molecular Medicine. 2009;13(9):3680–3686. doi: 10.1111/j.1582-4934.2009.00745.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Gatidis S., Zelenak C., Fajol A., et al. P38 MAPK activation and function following osmotic shock of erythrocytes. Cellular Physiology and Biochemistry. 2011;28(6):1279–1286. doi: 10.1159/000335859. [DOI] [PubMed] [Google Scholar]
- 184.Qadri S. M., Föller M., Lang F. Inhibition of suicidal erythrocyte death by resveratrol. Life Sciences. 2009;85(1-2):33–38. doi: 10.1016/j.lfs.2009.04.015. [DOI] [PubMed] [Google Scholar]
- 185.Lang K. S., Myssina S., Lang P. A., et al. Inhibition of erythrocyte phosphatidylserine exposure by urea and Cl− . American Journal of Physiology—Renal Physiology. 2004;286(6):F1046–F1053. doi: 10.1152/ajprenal.00263.2003. [DOI] [PubMed] [Google Scholar]
- 186.Qadri S. M., Mahmud H., Föller M., Lang F. Inhibition of suicidal erythrocyte death by xanthohumol. Journal of Agricultural and Food Chemistry. 2009;57(16):7591–7595. doi: 10.1021/jf900773w. [DOI] [PubMed] [Google Scholar]
- 187.Kucherenko Y., Geiger C., Shumilina E., Föller M., Lang F. Inhibition of cation channels and suicidal death of human erythrocytes by zidovudine. Toxicology. 2008;253(1–3):62–69. doi: 10.1016/j.tox.2008.08.012. [DOI] [PubMed] [Google Scholar]
- 188.Abed M., Feger M., Alzoubi K., et al. Sensitization of erythrocytes to suicidal erythrocyte death following water deprivation. Kidney and Blood Pressure Research. 2013;37(6):567–578. doi: 10.1159/000355737. [DOI] [PubMed] [Google Scholar]
- 189.Weiss E., Cytlak U. M., Rees D. C., Osei A., Gibson J. S. Deoxygenation-induced and Ca2+ dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients. Cell Calcium. 2012;51(1):51–56. doi: 10.1016/j.ceca.2011.10.005. [DOI] [PubMed] [Google Scholar]
- 190.Kempe D. S., Lang P. A., Duranton C., et al. Enhanced programmed cell death of iron-deficient erythrocytes. The FASEB Journal. 2006;20(2):368–370. doi: 10.1096/fj.05-4872fje. [DOI] [PubMed] [Google Scholar]
- 191.Zappulla D. Environmental stress, erythrocyte dysfunctions, inflammation, and the metabolic syndrome: adaptations to CO2 increases? Journal of the Cardiometabolic Syndrome. 2008;3(1):30–34. doi: 10.1111/j.1559-4572.2008.07263.x. [DOI] [PubMed] [Google Scholar]
- 192.Fırat U., Kaya S., Çim A., et al. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. Experimental Diabetes Research. 2012;2012:4. doi: 10.1155/2012/316384.316384 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Birka C., Lang P. A., Kempe D. S., et al. Enhanced susceptibility to erythrocyte ‘apoptosis’ following phosphate depletion. Pflügers Archiv. 2004;448(5):471–477. doi: 10.1007/s00424-004-1289-y. [DOI] [PubMed] [Google Scholar]
- 194.Banerjee D., Saha S., Basu S., Chakrabarti A. Porous red cell ultrastructure and loss of membrane asymmetry in a novel case of hemolytic anemia. European Journal of Haematology. 2008;81(5):399–402. doi: 10.1111/j.1600-0609.2008.01153.x. [DOI] [PubMed] [Google Scholar]
- 195.Mahmud H., Ruifrok W. P. T., Westenbrink B. D., et al. Suicidal erythrocyte death, eryptosis, as a novel mechanism in heart failure-associated anaemia. Cardiovascular Research. 2013;98(1):37–46. doi: 10.1093/cvr/cvt010. [DOI] [PubMed] [Google Scholar]
- 196.Polak-Jonkisz D., Purzyc L. Ca2+ influx versus efflux during eryptosis in uremic erythrocytes. Blood Purification. 2012;34(3-4):209–210. doi: 10.1159/000341627. [DOI] [PubMed] [Google Scholar]
- 197.Abed M., Artunc F., Alzoubi K., et al. Suicidal erythrocyte death in end-stage renal disease. Journal of Molecular Medicine. 2014;92(8):871–879. doi: 10.1007/s00109-014-1151-4. [DOI] [PubMed] [Google Scholar]
- 198.Lang P. A., Beringer O., Nicolay J. P., et al. Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. Journal of Molecular Medicine. 2006;84(5):378–388. doi: 10.1007/s00109-006-0058-0. [DOI] [PubMed] [Google Scholar]
- 199.Kempe D. S., Akel A., Lang P. A., et al. Suicidal erythrocyte death in sepsis. Journal of Molecular Medicine. 2007;85(3):269–277. doi: 10.1007/s00109-006-0123-8. [DOI] [PubMed] [Google Scholar]
- 200.Felder K. M., Hoelzle K., Ritzmann M., et al. Hemotrophic mycoplasmas induce programmed cell death in red blood cells. Cellular Physiology and Biochemistry. 2011;27(5):557–564. doi: 10.1159/000329957. [DOI] [PubMed] [Google Scholar]
- 201.Koka S., Lang C., Niemoeller O. M., et al. Influence of NO synthase inhibitor L-NAME on parasitemia and survival of Plasmodium berghei infected mice. Cellular Physiology and Biochemistry. 2008;21(5-6):481–488. doi: 10.1159/000129641. [DOI] [PubMed] [Google Scholar]
- 202.Totino P. R. R., Daniel-Ribeiro C. T., Ferreira-da-Cru M. D. F. Refractoriness of eryptotic red blood cells to plasmodium falciparum infection: a putative host defense mechanism limiting parasitaemia. PLoS ONE. 2011;6(10) doi: 10.1371/journal.pone.0026575.e26575 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Lang K. S., Roll B., Myssina S., et al. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cellular Physiology and Biochemistry. 2002;12(5-6):365–372. doi: 10.1159/000067907. [DOI] [PubMed] [Google Scholar]
- 204.Ayi K., Turrini F., Piga A., Arese P. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood. 2004;104(10):3364–3371. doi: 10.1182/blood-2003-11-3820. [DOI] [PubMed] [Google Scholar]
- 205.de Jong K., Emerson R. K., Butler J., Bastacky J., Mohandas N., Kuypers F. A. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood. 2001;98(5):1577–1584. doi: 10.1182/blood.v98.5.1577. [DOI] [PubMed] [Google Scholar]
- 206.Kean L. S., Brown L. E., Nichols J. W., Mohandas N., Archer D. R., Hsu L. L. Comparison of mechanisms of anemia in mice with sickle cell disease and beta-thalassemia: peripheral destruction, ineffective erythropoiesis, and phospholipid scramblase-mediated phosphatidylserine exposure. Experimental Hematology. 2002;30(5):394–402. doi: 10.1016/s0301-472x(02)00780-4. [DOI] [PubMed] [Google Scholar]
- 207.Browning J. A., Robinson H. C., Ellory J. C., Gibson J. S. Deoxygenation-induced non-electrolyte pathway in red cells from sickle cell patients. Cellular Physiology and Biochemistry. 2007;19(1–4):165–174. doi: 10.1159/000099204. [DOI] [PubMed] [Google Scholar]
- 208.Wood B. L., Gibson D. F., Tait J. F. Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood. 1996;88(5):1873–1880. [PubMed] [Google Scholar]
- 209.Chadebech P., Habibi A., Nzouakou R., et al. Delayed hemolytic transfusion reaction in sickle cell disease patients: evidence of an emerging syndrome with suicidal red blood cell death. Transfusion. 2009;49(9):1785–1792. doi: 10.1111/j.1537-2995.2009.02199.x. [DOI] [PubMed] [Google Scholar]
- 210.Kuypers F. A., Yuan J., Lewis R. A., et al. Membrane phospholipid asymmetry in human thalassemia. Blood. 1998;91(8):3044–3051. [PubMed] [Google Scholar]
- 211.Basu S., Banerjee D., Chandra S., Chakrabarti A. Eryptosis in hereditary spherocytosis and thalassemia: role of glycoconjugates. Glycoconjugate Journal. 2010;27(7–9):717–722. doi: 10.1007/s10719-009-9257-6. [DOI] [PubMed] [Google Scholar]
- 212.Cappadoro M., Giribaldi G., O'Brien E., et al. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood. 1998;92(7):2527–2534. [PubMed] [Google Scholar]
- 213.Ganesan S., Chaurasiya N. D., Sahu R., Walker L. A., Tekwani B. L. Understanding the mechanisms for metabolism-linked hemolytic toxicity of primaquine against glucose 6-phosphate dehydrogenase deficient human erythrocytes: evaluation of eryptotic pathway. Toxicology. 2012;294(1):54–60. doi: 10.1016/j.tox.2012.01.015. [DOI] [PubMed] [Google Scholar]
- 214.Bruce L. J., Robinson H. C., Guizouarn H., et al. Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1. Nature Genetics. 2005;37(11):1258–1263. doi: 10.1038/ng1656. [DOI] [PubMed] [Google Scholar]
- 215.Weber Y. G., Storch A., Wuttke T. V., et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. The Journal of Clinical Investigation. 2008;118(6):2157–2168. doi: 10.1172/JCI34438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 216.Abed M., Balasaheb S., Towhid S. T., Daniel C., Amann K., Lang F. Adhesion of annexin 7 deficient erythrocytes to endothelial cells. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0056650.e56650 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Föller M., Feil S., Ghoreschi K., et al. Anemia and splenomegaly in cGKI-deficient mice. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(18):6771–6776. doi: 10.1073/pnas.0708940105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Abed M., Towhid S. T., Feger M., et al. Adhesion of klotho-deficient eryptotic erythrocytes to endothelial cells. Acta Physiologica. 2013;207(3):485–493. doi: 10.1111/apha.12046. [DOI] [PubMed] [Google Scholar]
- 219.Kempe D. S., Ackermann T. F., Fischer S. S., et al. Accelerated suicidal erythrocyte death in Klotho-deficient mice. Pflugers Archiv European Journal of Physiology. 2009;458(3):503–512. doi: 10.1007/s00424-009-0636-4. [DOI] [PubMed] [Google Scholar]
- 220.Föller M., Kasinathan R. S., Koka S., et al. Enhanced susceptibility to suicidal death of erythrocytes from transgenic mice overexpressing erythropoietin. The American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2007;293(3):R1127–R1134. doi: 10.1152/ajpregu.00110.2007. [DOI] [PubMed] [Google Scholar]
- 221.Akel A., Wagner C. A., Kovacikova J., et al. Enhanced suicidal death of erythrocytes from gene-targeted mice lacking the Cl−/HCO3 − exchanger AE1. The American Journal of Physiology—Cell Physiology. 2007;292(5):C1759–C1767. doi: 10.1152/ajpcell.00158.2006. [DOI] [PubMed] [Google Scholar]
- 222.Bhavsar S. K., Gu S., Bobbala D., Lang F. Janus kinase 3 is expressed in erythrocytes, phosphorylated upon energy depletion and involved in the regulation of suicidal erythrocyte death. Cellular Physiology and Biochemistry. 2011;27(5):547–556. doi: 10.1159/000329956. [DOI] [PubMed] [Google Scholar]
- 223.Föller M., Mahmud H., Koka S., Lang F. Reduced Ca2+ entry and suicidal death of erythrocytes in PDK1 hypomorphic mice. Pflugers Archiv European Journal of Physiology. 2008;455(5):939–949. doi: 10.1007/s00424-007-0336-x. [DOI] [PubMed] [Google Scholar]
- 224.Maellaro E., Leoncini S., Moretti D., et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetologica. 2013;50(4):489–495. doi: 10.1007/s00592-011-0274-0. [DOI] [PubMed] [Google Scholar]
- 225.Mandal D., Baudin-Creuza V., Bhattacharyya A., et al. Caspase 3-mediated proteolysis of the N-terminal cytoplasmic domain of the human erythroid anion exchanger 1 (band 3) Journal of Biological Chemistry. 2003;278(52):52551–52558. doi: 10.1074/jbc.m306914200. [DOI] [PubMed] [Google Scholar]
- 226.Bratosin D., Estaquier J., Petit F., et al. Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death and Differentiation. 2001;8(12):1143–1156. doi: 10.1038/sj.cdd.4400946. [DOI] [PubMed] [Google Scholar]
- 227.Mandal D., Moitra P. K., Saha S., Basu J. Caspase 3 regulates phosphatidylserine externalization and phagocytosis of oxidatively stressed erythrocytes. FEBS Letters. 2002;513(2-3):184–188. doi: 10.1016/s0014-5793(02)02294-9. [DOI] [PubMed] [Google Scholar]
- 228.Matarrese P., Straface E., Pietraforte D., et al. Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. The FASEB Journal. 2005;19(3):416–418. doi: 10.1096/fj.04-2450fje. [DOI] [PubMed] [Google Scholar]
- 229.Weil M., Jacobson M. D., Raff M. C. Are caspases involved in the death of cells with a transcriptionally inactive nucleus? Sperm and chicken erythrocytes. Journal of Cell Science. 1998;111(18):2707–2715. doi: 10.1242/jcs.111.18.2707. [DOI] [PubMed] [Google Scholar]
- 230.Das A., Smolenski A., Lohmann S. M., Kukreja R. C. Cyclic GMP-dependent protein kinase Iα attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. Journal of Biological Chemistry. 2006;281(50):38644–38652. doi: 10.1074/jbc.M606142200. [DOI] [PubMed] [Google Scholar]
- 231.Li J. R., Billiar T. R. The anti-apoptotic actions of nitric oxide in hepatocytes. Cell Death and Differentiation. 1999;6(10):952–955. doi: 10.1038/sj.cdd.4400579. [DOI] [PubMed] [Google Scholar]
- 232.Nagai-Kusuhara A., Nakamura M., Mukuno H., Kanamori A., Negi A., Seigel G. M. cAMP-responsive element binding protein mediates a cGMP/protein kinase G-deendent anti-apoptotic signal induced by nitric oxide in retinal neuro-glial progenitor cells. Experimental Eye Research. 2007;84:152–162. doi: 10.1016/j.exer.2006.09.010. [DOI] [PubMed] [Google Scholar]
- 233.Schlossmann J., Feil R., Hofmann F. Insights into cGMP signalling derived from cGMP kinase knockout mice. Frontiers in Bioscience. 2005;10:1279–1289. doi: 10.2741/1618. [DOI] [PubMed] [Google Scholar]
- 234.Owusu B. Y., Stapley R., Patel R. P. Nitric oxide formation versus scavenging: the red blood cell balancing act. Journal of Physiology (London) 2012;590(20):4993–5000. doi: 10.1113/jphysiol.2012.234906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 235.Kahn M. J., Maley J. H., Lasker G. F., Kadowitz P. J. Updated role of nitric oxide in disorders of erythrocyte function. Cardiovascular and Hematological Disorders—Drug Targets. 2013;13(1):83–87. doi: 10.2174/1871529x11313010009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Gow A. J., Luchsinger B. P., Pawloski J. R., Singel D. J., Stamler J. S. The oxyhemoglobin reaction of nitric oxide. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(16):9027–9032. doi: 10.1073/pnas.96.16.9027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 237.Malan D., Levi R. C., Alloatti G., Marcantoni A., Bedendi I., Gallo M. P. Cyclic AMP and cyclic GMP independent stimulation of ventricular calcium current by peroxynitrite donors in guinea pig myocytes. Journal of Cellular Physiology. 2003;197(2):284–296. doi: 10.1002/jcp.10368. [DOI] [PubMed] [Google Scholar]
- 238.William M., Vien J., Hamilton E., et al. The nitric oxide donor sodium nitroprusside stimulates the Na+-K+ pump in isolated rabbit cardiac myocytes. Journal of Physiology. 2005;565(3):815–825. doi: 10.1113/jphysiol.2005.086447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 239.Dimmeler S., Haendeler J., Nehls M., Zeiher A. M. Suppression of apoptosis by nitric oxide via inhibition of interleukin- 1β-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. The Journal of Experimental Medicine. 1997;185(4):601–607. doi: 10.1084/jem.185.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 240.Rössig L., Fichtlscherer B., Breitschopf K., et al. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. Journal of Biological Chemistry. 1999;274(11):6823–6826. doi: 10.1074/jbc.274.11.6823. [DOI] [PubMed] [Google Scholar]
- 241.Benhar M., Stamler J. S. A central role for S-nitrosylation in apoptosis. Nature Cell Biology. 2005;7(7):645–646. doi: 10.1038/ncb0705-645. [DOI] [PubMed] [Google Scholar]
- 242.Haendeler J., Hoffmann J., Tischler V., Berk B. C., Zeiher A. M., Dimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nature Cell Biology. 2002;4(10):743–749. doi: 10.1038/ncb851. [DOI] [PubMed] [Google Scholar]
- 243.Haendeler J., Hoffmann J., Zeiher A. M., Dimmeler S. Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins. Circulation. 2004;110(7):856–861. doi: 10.1161/01.cir.0000138743.09012.93. [DOI] [PubMed] [Google Scholar]
- 244.Hoffmann J., Haendeler J., Zeiher A. M., Dimmeler S. TNF alpha and oxLDL reduce protein S-nitrosylation in endothelial cells. Journal of Biological Chemistry. 2001;276(44):41383–41387. doi: 10.1074/jbc.m107566200. [DOI] [PubMed] [Google Scholar]
- 245.Melino G., Bernassola F., Knight R. A., Corasaniti M. T., Nisticò G., Finazzi-Agrò A. S-nitrosylation regulates apoptosis. Nature. 1997;388(6641):432–433. doi: 10.1038/41237. [DOI] [PubMed] [Google Scholar]
- 246.Castillo S. S., Levy M., Wang C., Thaikoottathil J. V., Khan E., Goldkorn T. Nitric oxide-enhanced caspase-3 and acidic sphingomyelinase interaction: a novel mechanism by which airway epithelial cells escape ceramide-induced apoptosis. Experimental Cell Research. 2007;313(4):816–823. doi: 10.1016/j.yexcr.2006.12.001. [DOI] [PubMed] [Google Scholar]
- 247.Davidson S. M., Duchen M. R. Endothelial mitochondria: contributing to vascular function and disease. Circulation Research. 2007;100(8):1128–1141. doi: 10.1161/01.res.0000261970.18328.1d. [DOI] [PubMed] [Google Scholar]
- 248.Pacher P., Beckman J. S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews. 2007;87(1):315–424. doi: 10.1152/physrev.00029.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 249.Dasgupta T., Fabry M. E., Kaul D. K. Antisickling property of fetal hemoglobin enhances nitric oxide bioavailability and ameliorates organ oxidative stress in transgenic-knockout sickle mice. The American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2010;298(2):R394–R402. doi: 10.1152/ajpregu.00611.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250.Salhany J. M. The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study. Blood Cells, Molecules, and Diseases. 2013;50(1):8–19. doi: 10.1016/j.bcmd.2012.08.006. [DOI] [PubMed] [Google Scholar]
- 251.Kaul D. K., Liu X.-D., Chang H.-Y., Nagel R. L., Fabry M. E. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. Journal of Clinical Investigation. 2004;114(8):1136–1145. doi: 10.1172/JCI200421633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 252.Borst O., Abed M., Alesutan I., et al. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. The American Journal of Physiology—Cell Physiology. 2012;302(4):C644–C651. doi: 10.1152/ajpcell.00340.2011. [DOI] [PubMed] [Google Scholar]
- 253.Betal S. G., Setty B. N. Y. Phosphatidylserine-positive erythrocytes bind to immobilized and soluble thrombospondin-1 via its heparin-binding domain. Translational Research. 2008;152(4):165–177. doi: 10.1016/j.trsl.2008.07.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 254.Manodori A. B., Barabino G. A., Lubin B. H., Kuypers F. A. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood. 2000;95(4):1293–1300. [PubMed] [Google Scholar]
- 255.Fadok V. A., Bratton D. L., Rose D. M., Pearson A., Ezekewitz R. A. B., Henson P. M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405(6782):85–90. doi: 10.1038/35011084. [DOI] [PubMed] [Google Scholar]
- 256.Walker B., Towhid S. T., Schmid E., et al. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors. The American Journal of Physiology—Cell Physiology. 2014;306(3):C291–C297. doi: 10.1152/ajpcell.00318.2013. [DOI] [PubMed] [Google Scholar]
- 257.Andrews D. A., Low P. S. Role of red blood cells in thrombosis. Current Opinion in Hematology. 1999;6(2):76–82. doi: 10.1097/00062752-199903000-00004. [DOI] [PubMed] [Google Scholar]
- 258.Nagababu E., Gulyani S., Earley C. J., Cutler R., Mattson M., Rifkind J. Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radical Research. 2008;42(9):824–829. doi: 10.1080/10715760802459879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 259.Qadri S. M., Mahmud H., Lang E., et al. Enhanced suicidal erythrocyte death in mice carrying a loss-of-function mutation of the adenomatous polyposis coli gene. Journal of Cellular and Molecular Medicine. 2012;16(5):1085–1093. doi: 10.1111/j.1582-4934.2011.01387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 260.Calderón-Salinas J. V., Muñoz-Reyes E. G., Guerrero-Romero J. F., et al. Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Molecular and Cellular Biochemistry. 2011;357(1-2):171–179. doi: 10.1007/s11010-011-0887-1. [DOI] [PubMed] [Google Scholar]
- 261.Thornalley P. J. Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochemical Journal. 1988;254(3):751–755. doi: 10.1042/bj2540751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 262.Nwose E. U., Jelinek H. F., Richards R. S., Kerr R. G. Erythrocyte oxidative stress in clinical management of diabetes and its cardiovascular complications. British Journal of Biomedical Science. 2007;64(1):35–43. doi: 10.1080/09674845.2007.11732754. [DOI] [PubMed] [Google Scholar]
- 263.Bandeira S. D. M., Guedes G. D. S., de Fonseca L. J. S., et al. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxidative Medicine and Cellular Longevity. 2012;2012:13. doi: 10.1155/2012/819310.819310 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 264.Dmitrieva O., de Lusignan S., Macdougall I. C., et al. Association of anaemia in primary care patients with chronic kidney disease: cross sectional study of quality improvement in chronic kidney disease (QICKD) trial data. BMC Nephrology. 2013;14, article 24 doi: 10.1186/1471-2369-14-24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265.Yang M., Fox C. H., Vassalotti J., Choi M. Complications of progression of CKD. Advances in Chronic Kidney Disease. 2011;18(6):400–405. doi: 10.1053/j.ackd.2011.10.001. [DOI] [PubMed] [Google Scholar]
- 266.Adamson J. W. Hyporesponsiveness to erythropoiesis stimulating agents in chronic kidney disease: the many faces of inflammation. Advances in Chronic Kidney Disease. 2009;16(2):76–82. doi: 10.1053/j.ackd.2008.12.009. [DOI] [PubMed] [Google Scholar]
- 267.Atkinson M. A., Furth S. L. Anemia in children with chronic kidney disease. Nature Reviews Nephrology. 2011;7(11):635–641. doi: 10.1038/nrneph.2011.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Attanasio P., Ronco C., Anker S. D., Cicoira M., von Haehling S. Role of iron deficiency and anemia in cardio-renal syndromes. Seminars in Nephrology. 2012;32(1):57–62. doi: 10.1016/j.semnephrol.2011.11.008. [DOI] [PubMed] [Google Scholar]
- 269.Besarab A., Coyne D. W. Iron supplementation to treat anemia in patients with chronic kidney disease. Nature Reviews Nephrology. 2010;6(12):699–710. doi: 10.1038/nrneph.2010.139. [DOI] [PubMed] [Google Scholar]
- 270.Kovesdy C. P. Iron and clinical outcomes in dialysis and non-dialysis-dependent chronic kidney disease patients. Advances in Chronic Kidney Disease. 2009;16(2):109–116. doi: 10.1053/j.ackd.2008.12.006. [DOI] [PubMed] [Google Scholar]
- 271.Kwack C., Balakrishnan V. S. Managing erythropoietin hyporesponsiveness. Seminars in Dialysis. 2006;19(2):146–151. doi: 10.1111/j.1525-139X.2006.00141.x. [DOI] [PubMed] [Google Scholar]
- 272.Vos F. E., Schollum J. B., Coulter C. V., Doyle T. C. A., Duffull S. B., Walker R. J. Red blood cell survival in long-term dialysis patients. American Journal of Kidney Diseases. 2011;58(4):591–598. doi: 10.1053/j.ajkd.2011.03.031. [DOI] [PubMed] [Google Scholar]
- 273.Antonelou M. H., Kriebardis A. G., Velentzas A. D., Kokkalis A. C., Georgakopoulou S.-C., Papassideri I. S. Oxidative stress-associated shape transformation and membrane proteome remodeling in erythrocytes of end stage renal disease patients on hemodialysis. Journal of Proteomics. 2011;74(11):2441–2452. doi: 10.1016/j.jprot.2011.04.009. [DOI] [PubMed] [Google Scholar]
- 274.Zhu Q., Sun Z., Jiang Y., Chen F., Wang M. Acrolein scavengers: reactivity, mechanism and impact on health. Molecular Nutrition and Food Research. 2011;55(9):1375–1390. doi: 10.1002/mnfr.201100149. [DOI] [PubMed] [Google Scholar]
- 275.Facorro G., Aguirre F., Florentin L., et al. Oxidative stress and membrane fluidity in erythrocytes from patients with hemolytic uremic syndrome. Acta Physiologica, Pharmacologica et Therapeutica Latinoamericana. 1997;47(3):137–146. [PubMed] [Google Scholar]
- 276.Gomez S. A., Abrey-Recalde M. J., Panek C. A., et al. The oxidative stress induced in vivo by Shiga toxin-2 contributes to the pathogenicity of haemolytic uraemic syndrome. Clinical & Experimental Immunology. 2013;173(3):463–472. doi: 10.1111/cei.12124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 277.Galley H. F. Oxidative stress and mitochondrial dysfunction in sepsis. British Journal of Anaesthesia. 2011;107(1):57–64. doi: 10.1093/bja/aer093. [DOI] [PubMed] [Google Scholar]
- 278.Gitlin J. D. Wilson Disease. Gastroenterology. 2003;125(6):1868–1877. doi: 10.1053/j.gastro.2003.05.010. [DOI] [PubMed] [Google Scholar]
- 279.Attri S., Sharma N., Jahagirdar S., Thapa B. R., Prasad R. Erythrocyte metabolism and antioxidant status of patients with wilson disease with hemolytic anemia. Pediatric Research. 2006;59(4):593–597. doi: 10.1203/01.pdr.0000203098.77573.39. [DOI] [PubMed] [Google Scholar]
- 280.Nagasaka H., Inoue I., Inui A., et al. Relationship between oxidative stress and antioxidant systems in the liver of patients with Wilson disease: hepatic manifestation in wilson disease as a consequence of augmented oxidative stress. Pediatric Research. 2006;60(4):472–477. doi: 10.1203/01.pdr.0000238341.12229.d3. [DOI] [PubMed] [Google Scholar]
- 281.Lang P. A., Kasinathan R. S., Brand V. B., et al. Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and annexin-A7 deficiency. Cellular Physiology and Biochemistry. 2009;24(5-6):415–428. doi: 10.1159/000257529. [DOI] [PubMed] [Google Scholar]
- 282.Basu S., Banerjee D., Chandra S., Chakrabarti A. Loss of phospholipid membrane asymmetry and sialylated glycoconjugates from erythrocyte surface in haemoglobin E β-thalassaemia. British Journal of Haematology. 2008;141(1):92–99. doi: 10.1111/j.1365-2141.2008.06995.x. [DOI] [PubMed] [Google Scholar]
- 283.Haynes J., Jr., Obiako B., King J. A., Hester R. B., Ofori-Acquah S. Activated neutrophil-mediated sickle red blood cell adhesion to lung vascular endothelium: role of phosphatidylserine-exposed sickle red blood cells. American Journal of Physiology—Heart and Circulatory Physiology. 2006;291(4):H1679–H1685. doi: 10.1152/ajpheart.00256.2006. [DOI] [PubMed] [Google Scholar]
- 284.Kaul D. K., Tsai H. M., Liu X. D., Nakada M. T., Nagel R. L., Coller B. S. Monoclonal antibodies to alpha V beta 3 (7E3 and LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-activating factor. Blood. 2000;95(2):368–374. [PubMed] [Google Scholar]
- 285.Kumar A., Eckman J. R., Wick T. M. Inhibition of plasma-mediated adherence of sickle erythrocytes to microvascular endothelium by conformationally constrained RGD-containing peptides. American Journal of Hematology. 1996;53(2):92–98. doi: 10.1002/(sici)1096-8652(199610)53:260;92::aid-ajh662;3.3.co;2-9. [DOI] [PubMed] [Google Scholar]
- 286.Setty B. N. Y., Kulkarni S., Stuart M. J. Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood. 2002;99(5):1564–1571. doi: 10.1182/blood.v99.5.1564. [DOI] [PubMed] [Google Scholar]
- 287.Haynes J., Obiako B., Hester R. B., Baliga B. S., Stevens T. Hydroxyurea attenuates activated neutrophil-mediated sickle erythrocyte membrane phosphatidylserine exposure and adhesion to pulmonary vascular endothelium. The American Journal of Physiology—Heart and Circulatory Physiology. 2008;294(1):H379–H385. doi: 10.1152/ajpheart.01068.2007. [DOI] [PubMed] [Google Scholar]
- 288.Hillery C. A., Du M. C., Wang W. C., Scott J. P. Hydroxyurea therapy decreases the in vitro adhesion of sickle erythrocytes to thrombospondin and laminin. British Journal of Haematology. 2000;109(2):322–327. doi: 10.1046/j.1365-2141.2000.02040.x. [DOI] [PubMed] [Google Scholar]
- 289.Setty B. N. Y., Kulkarni S., Dampier C. D., Stuart M. J. Fetal hemoglobin in sickle cell anemia: relationship to erythrocyte adhesion markers and adhesion. Blood. 2001;97(9):2568–2573. doi: 10.1182/blood.v97.9.2568. [DOI] [PubMed] [Google Scholar]
- 290.Yasin Z., Witting S., Palascak M. B., Joiner C. H., Rucknagel D. L., Franco R. S. Phosphatidylserine externalization in sickle red blood cells: associations with cell age, density, and hemoglobin F. Blood. 2003;102(1):365–370. doi: 10.1182/blood-2002-11-3416. [DOI] [PubMed] [Google Scholar]
- 291.Charache S., Terrin M. L., Moore R. D., et al. Effect of hydroxyurea on the frequency of painful crises in sickle-cell-anemia. The New England Journal of Medicine. 1995;332(20):1317–1322. doi: 10.1056/nejm199505183322001. [DOI] [PubMed] [Google Scholar]
- 292.Kirk K. Membrane transport in the malaria-infected erythrocyte. Physiological Reviews. 2001;81(2):495–537. doi: 10.1152/physrev.2001.81.2.495. [DOI] [PubMed] [Google Scholar]
- 293.Duranton C., Huber S. M., Tanneur V., et al. Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes. Cellular Physiology and Biochemistry. 2003;13(4):189–198. doi: 10.1159/000072421. [DOI] [PubMed] [Google Scholar]
- 294.Brand V. B., Sandu C. D., Duranton C., et al. Dependence of Plasmodium falciparum in vitro growth on the cation permeability of the human host erythrocyte. Cellular Physiology and Biochemistry. 2003;13(6):347–356. doi: 10.1159/000075122. [DOI] [PubMed] [Google Scholar]
- 295.Lang F., Lang P. A., Lang K. S., et al. Channel-induced apoptosis of infected host cells—the case of malaria. Pflugers Archiv. 2004;448(3):319–324. doi: 10.1007/s00424-004-1254-9. [DOI] [PubMed] [Google Scholar]
- 296.Huber S. M., Duranton C., Lang F. Patch-clamp analysis of the ‘new permeability pathways’ in malaria-infected erythrocytes. International Review of Cytology. 2005;246:59–134. doi: 10.1016/s0074-7696(05)46003-9. [DOI] [PubMed] [Google Scholar]
- 297.Lew V. L., Tiffert T., Ginsburg H. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood. 2003;101(10):4189–4194. doi: 10.1182/blood-2002-08-2654. [DOI] [PubMed] [Google Scholar]
- 298.Joshi P., Gupta C. M. Abnormal membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. British Journal of Haematology. 1988;68(2):255–259. doi: 10.1111/j.1365-2141.1988.tb06198.x. [DOI] [PubMed] [Google Scholar]
- 299.Schwartz R. S., Olson J. A., Raventos-Suarez C., et al. Altered plasma membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. Blood. 1987;69(2):401–407. [PubMed] [Google Scholar]
- 300.Ayi K., Giribaldi G., Skorokhod A., Schwarzer E., Prendergast P. T., Arese P. 16alpha-bromoepiandrosterone, an antimalarial analogue of the hormone dehydroepiandrosterone, enhances phagocytosis of ring stage parasitized erythrocytes: a novel mechanism for antimalarial activity. Antimicrobial Agents and Chemotherapy. 2002;46(10):3180–3184. doi: 10.1128/aac.46.10.3180-3184.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 301.Turrini F., Ginsburg H., Bussolino F., Pescarmona G. P., Serra M. V., Arese P. Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and nonimmune determinants and dependence on parasite developmental stage. Blood. 1992;80(3):801–808. [PubMed] [Google Scholar]
- 302.Sherman I. W., Eda S., Winograd E. Erythrocyte aging and malaria. Cellular and Molecular Biology. 2004;50(2):159–169. [PubMed] [Google Scholar]
- 303.Sherman I. W., Eda S., Winograd E. Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes and Infection. 2003;5(10):897–909. doi: 10.1016/s1286-4579(03)00162-x. [DOI] [PubMed] [Google Scholar]
- 304.Koka S., Föller M., Lamprecht G., et al. Iron deficiency influences the course of malaria in Plasmodium berghei infected mice. Biochemical and Biophysical Research Communications. 2007;357(3):608–614. doi: 10.1016/j.bbrc.2007.03.175. [DOI] [PubMed] [Google Scholar]
- 305.Koka S., Huber S. M., Boini K. M., Lang C., Föller M., Lang F. Lead decreases parasitemia and enhances survival of Plasmodium berghei-infected mice. Biochemical and Biophysical Research Communications. 2007;363(3):484–489. doi: 10.1016/j.bbrc.2007.08.173. [DOI] [PubMed] [Google Scholar]
