Abstract
We show that the commonly used Rayleigh-Debye method for calculating light scattering can lead to significant errors when used for describing scattering from dilute solutions of long rigid polymers, errors that can be overcome by use of the easily applied Shifrin approximation. In order to show the extent of the discrepancies between the two methods, we have performed calculations at normal incidence both for polarized and unpolarized incident light with the scattering intensity determined as a function of polarization angle and of scattering angle, assuming that the incident light is in a spectral region where the absorption of hemoglobin is small. When the Shifrin method is used, the calculated intensities using either polarized or unpolarized scattered light give information about the alignment of polymers, a feature that is lost in the Rayleigh-Debye approximation because the effect of the asymmetric shape of the scatterer on the incoming polarized electric field is ignored. Using sickle hemoglobin polymers as an example, we have calculated the intensity of light scattering using both approaches and found that, for totally aligned polymers within parallel planes, the difference can be as large as 25%, when the incident electric field is perpendicular to the polymers, for near forward or near backward scattering (0 degrees or 180 degrees scattering angle), but becomes zero as the scattering angle approaches 90 degrees. For randomly oriented polymers within a plane, or for incident unpolarized light for either totally oriented or randomly oriented polymers, the difference between the two results for near forward or near backward scattering is approximately 15%.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi K., Asakura T. Demonstration of a delay time during aggregation of diluted solutions of deoxyhemoglobin S and hemoglobin CHarlem in concentrated phosphate buffer. J Biol Chem. 1978 Oct 10;253(19):6641–6643. [PubMed] [Google Scholar]
- Adachi K., Asakura T. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers. Blood Cells. 1982;8(2):213–224. [PubMed] [Google Scholar]
- Adachi K., Asakura T. Multiple nature of polymers of deoxyhemoglobin S prepared by different methods. J Biol Chem. 1983 Mar 10;258(5):3045–3050. [PubMed] [Google Scholar]
- Adachi K., Asakura T. Nucleation-controlled aggregation of deoxyhemoglobin S. Possible difference in the size of nuclei in different phosphate concentrations. J Biol Chem. 1979 Aug 25;254(16):7765–7771. [PubMed] [Google Scholar]
- Andreo R. H., Farrell R. A. Corneal small-angle light-scattering theory: wavy fibril models. J Opt Soc Am. 1982 Nov;72(11):1479–1492. doi: 10.1364/josa.72.001479. [DOI] [PubMed] [Google Scholar]
- Basak S., Ferrone F. A., Wang J. T. Kinetics of domain formation by sickle hemoglobin polymers. Biophys J. 1988 Nov;54(5):829–843. doi: 10.1016/S0006-3495(88)83020-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berne B. J. Interpretation of the light scattering from long rods. J Mol Biol. 1974 Nov 15;89(4):755–758. doi: 10.1016/0022-2836(74)90049-7. [DOI] [PubMed] [Google Scholar]
- Briehl R. W., Christoph G. W. Exponential progress curves and shear in the gelation of hemoglobin S. Prog Clin Biol Res. 1987;240:129–149. [PubMed] [Google Scholar]
- Cox J. L., Farrell R. A., Hart R. W., Langham M. E. The transparency of the mammalian cornea. J Physiol. 1970 Oct;210(3):601–616. doi: 10.1113/jphysiol.1970.sp009230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. 1983 Mar 31-Apr 6Nature. 302(5907):415–417. doi: 10.1038/302415a0. [DOI] [PubMed] [Google Scholar]
- Dykes G. W., Crepeau R. H., Edelstein S. J. Three-dimensional reconstruction of the 14-filament fibers of hemoglobin S. J Mol Biol. 1979 Jun 5;130(4):451–472. doi: 10.1016/0022-2836(79)90434-0. [DOI] [PubMed] [Google Scholar]
- Eaton W. A., Hofrichter J. Hemoglobin S gelation and sickle cell disease. Blood. 1987 Nov;70(5):1245–1266. [PubMed] [Google Scholar]
- Eaton W. A., Hofrichter J. Polarized absorption and linear dichroism spectroscopy of hemoglobin. Methods Enzymol. 1981;76:175–261. doi: 10.1016/0076-6879(81)76126-3. [DOI] [PubMed] [Google Scholar]
- Elbaum D., Harrington J. P., Bookchin R. M., Nagel R. L. Kinetics of HB S gelation. Effect of alkylureas, ionic strength and other hemoglobins. Biochim Biophys Acta. 1978 Jun 21;534(2):228–238. doi: 10.1016/0005-2795(78)90005-3. [DOI] [PubMed] [Google Scholar]
- Farrell R. A., McCally R. L. On the interpretation of depth dependent light scattering measurements in normal corneas. Acta Ophthalmol (Copenh) 1976 Jul;54(3):261–270. doi: 10.1111/j.1755-3768.1976.tb01254.x. [DOI] [PubMed] [Google Scholar]
- Ferrone F. A., Basak S., Martino A. J., Zhou H. X. Polymer domains, gelation models and sickle cell crises. Prog Clin Biol Res. 1987;240:47–58. [PubMed] [Google Scholar]
- Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J Mol Biol. 1985 Jun 25;183(4):591–610. doi: 10.1016/0022-2836(85)90174-3. [DOI] [PubMed] [Google Scholar]
- Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol. 1985 Jun 25;183(4):611–631. doi: 10.1016/0022-2836(85)90175-5. [DOI] [PubMed] [Google Scholar]
- Ferrone F. A., Hofrichter J., Sunshine H. R., Eaton W. A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys J. 1980 Oct;32(1):361–380. doi: 10.1016/S0006-3495(80)84962-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaskin F., Cantor C. R., Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol. 1974 Nov 15;89(4):737–755. doi: 10.1016/0022-2836(74)90048-5. [DOI] [PubMed] [Google Scholar]
- Goldman J. N., Benedek G. B. The relationship between morphology and transparency in the nonswelling corneal stroma of the shark. Invest Ophthalmol. 1967 Dec;6(6):574–600. [PubMed] [Google Scholar]
- Hantgan R. R., Hermans J. Assembly of fibrin. A light scattering study. J Biol Chem. 1979 Nov 25;254(22):11272–11281. [PubMed] [Google Scholar]
- Hart R. W., Farrell R. A. Light scattering in the cornea. J Opt Soc Am. 1969 Jun;59(6):766–774. doi: 10.1364/josa.59.000766. [DOI] [PubMed] [Google Scholar]
- Hofrichter J. Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves. J Mol Biol. 1986 Jun 5;189(3):553–571. doi: 10.1016/0022-2836(86)90324-4. [DOI] [PubMed] [Google Scholar]
- Jones C. R., Johnson C. S., Jr Photon correlation spectroscopy of hemoglobin: diffusion of oxy-HbA and oxy-HbS. Biopolymers. 1978 Jun;17(6):1581–1593. doi: 10.1002/bip.1978.360170615. [DOI] [PubMed] [Google Scholar]
- Kam Z., Hofrichter J. Quasi-elastic laser light scattering from solutions and gels of hemoglobin S. Biophys J. 1986 Nov;50(5):1015–1020. doi: 10.1016/S0006-3495(86)83544-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAURICE D. M. The structure and transparency of the cornea. J Physiol. 1957 Apr 30;136(2):263–286. doi: 10.1113/jphysiol.1957.sp005758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madonia F., San Biagio P. L., Palma M. U., Schiliro' G., Musumeci S., Russo G. Photon scattering as a probe of microviscosity and channel size in gels such as sickle haemoglobin. 1983 Mar 31-Apr 6Nature. 302(5907):412–415. doi: 10.1038/302412a0. [DOI] [PubMed] [Google Scholar]
- McCally R. L., Farrell R. A. The depth dependence of light scattering from the normal rabbit cornea. Exp Eye Res. 1976 Jul;23(1):69–81. doi: 10.1016/0014-4835(76)90030-0. [DOI] [PubMed] [Google Scholar]
- Minton A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem. 1983;55(2):119–140. doi: 10.1007/BF00673707. [DOI] [PubMed] [Google Scholar]
- Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
- Mitchison T., Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15;312(5991):232–237. doi: 10.1038/312232a0. [DOI] [PubMed] [Google Scholar]
- Pumphrey J. G., Steinhardt J. Formation of needle-like aggregates in stirred solutions of hemoglobin S1. Biochem Biophys Res Commun. 1976 Mar 8;69(1):99–105. doi: 10.1016/s0006-291x(76)80278-1. [DOI] [PubMed] [Google Scholar]
- Purich D. L., Kristofferson D. Microtubule assembly: a review of progress, principles, and perspectives. Adv Protein Chem. 1984;36:133–212. doi: 10.1016/s0065-3233(08)60297-1. [DOI] [PubMed] [Google Scholar]
- ROSSI-FANELLI A., ANTONINI E., CAPUTO A. Studies on the relations between molecular and functional properties of hemoglobin. I. The effect of salts on the molecular weight of human hemoglobin. J Biol Chem. 1961 Feb;236:391–396. [PubMed] [Google Scholar]
- Ross P. D., Briehl R. W., Minton A. P. Temperature dependence of nonideality in concentrated solutions of hemoglobin. Biopolymers. 1978 Sep;17(9):2285–2288. doi: 10.1002/bip.1978.360170920. [DOI] [PubMed] [Google Scholar]
- Ross P. D., Hofrichter J., Eaton W. A. Thermodynamics of gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1977 Sep 15;115(2):111–134. doi: 10.1016/0022-2836(77)90093-6. [DOI] [PubMed] [Google Scholar]
- Ross P. D., Minton A. P. Analysis of non-ideal behavior in concentrated hemoglobin solutions. J Mol Biol. 1977 May 25;112(3):437–452. doi: 10.1016/s0022-2836(77)80191-5. [DOI] [PubMed] [Google Scholar]
- Steinert P. M., Idler W. W., Zimmerman S. B. Self-assembly of bovine epidermal keratin filaments in vitro. J Mol Biol. 1976 Dec 15;108(3):547–567. doi: 10.1016/s0022-2836(76)80136-2. [DOI] [PubMed] [Google Scholar]
- Sunshine H. R., Hofrichter J., Ferrone F. A., Eaton W. A. Oxygen binding by sickle cell hemoglobin polymers. J Mol Biol. 1982 Jun 25;158(2):251–273. doi: 10.1016/0022-2836(82)90432-6. [DOI] [PubMed] [Google Scholar]
- Traub W., Piez K. A. The chemistry and structure of collagen. Adv Protein Chem. 1971;25:243–352. doi: 10.1016/s0065-3233(08)60281-8. [DOI] [PubMed] [Google Scholar]
- Wegner A., Savko P. Fragmentation of actin filaments. Biochemistry. 1982 Apr 13;21(8):1909–1913. doi: 10.1021/bi00537a032. [DOI] [PubMed] [Google Scholar]
- Wegner A. Spontaneous fragmentation of actin filaments in physiological conditions. Nature. 1982 Mar 18;296(5854):266–267. doi: 10.1038/296266a0. [DOI] [PubMed] [Google Scholar]