Abstract
Four heterozygous triosephosphate isomerase (TPI) mutants with approximately 50% reduced activity in blood compared to wild type were detected in offspring of 1-ethyl-1-nitrosourea treated male mice. Breeding experiments displayed an autosomal, dominant mode of inheritance for the mutations. All mutations were found to be homozygous lethal at an early postimplantation stage of embryonic development, probably due to a total lack of TPI activity and consequently to the inability to utilize glucose as a source of metabolic energy. Although activity alteration was also found in liver, lung, kidney, spleen, heart, brain and muscle the TPI deficiency in heterozygotes has no influence on the following physiological traits: hematological parameters, plasma glucose, glucose consumption of blood cells, body weight and organo-somatic indices of liver, spleen, heart, kidney and lung. Biochemical investigations of TPI in the four mutant lines indicated no difference of physicochemical properties compared to the wild type. Results from immunoinactivation assays indicate that the decrease of enzyme activity corresponds to a decrease in the level of an immunologically active moiety. It is suggested that the mutations have affected the Tpi-1 structural locus and resulted in alleles which produce no detectable enzyme activity and no immunologically cross-reacting material. The study furthermore suggests one functional TPI gene per haploid genome in the erythrocyte and seven other tested organs of the mouse.
Full Text
The Full Text of this article is available as a PDF (870.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Artavanis-Tsakonas S., Harris J. I. Primary structure of triosephosphate isomerase from Bacillus stearothermophilus. Eur J Biochem. 1980 Jul;108(2):599–611. doi: 10.1111/j.1432-1033.1980.tb04755.x. [DOI] [PubMed] [Google Scholar]
 - Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 Jun 19;255(5510):609–614. doi: 10.1038/255609a0. [DOI] [PubMed] [Google Scholar]
 - Brinster R. L. Carbon dioxide production from glucose by the preimplantation mouse embryo. Exp Cell Res. 1967 Aug;47(1):271–277. doi: 10.1016/0014-4827(67)90230-3. [DOI] [PubMed] [Google Scholar]
 - Brinster R. L. Hexokinase activity in the preimplantation mouse embryo. Enzymologia. 1968 Jul 15;34(5):304–308. [PubMed] [Google Scholar]
 - Brown J. R., Daar I. O., Krug J. R., Maquat L. E. Characterization of the functional gene and several processed pseudogenes in the human triosephosphate isomerase gene family. Mol Cell Biol. 1985 Jul;5(7):1694–1706. doi: 10.1128/mcb.5.7.1694. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Bulfield G., Ball S. T., Peters J. An allele at the triose phosphate isomerase, Tpi-1 locus on chromosome 6 recovered from feral mice. Genet Res. 1987 Dec;50(3):239–243. doi: 10.1017/s0016672300023764. [DOI] [PubMed] [Google Scholar]
 - Bulfield G., Hall J. M., Tsakas S. Incidence of inherited enzyme activity variants in feral mouse populations. Biochem Genet. 1984 Feb;22(1-2):133–138. doi: 10.1007/BF00499293. [DOI] [PubMed] [Google Scholar]
 - Charles D. J., Pretsch W. Linear dose-response relationship of erythrocyte enzyme-activity mutations in offspring of ethylnitrosourea-treated mice. Mutat Res. 1987 Jan;176(1):81–91. doi: 10.1016/0027-5107(87)90255-7. [DOI] [PubMed] [Google Scholar]
 - Clay S. A., Shore N. A., Landing B. H. Triosephosphate isomerase deficiency. A case report with neuropathological findings. Am J Dis Child. 1982 Sep;136(9):800–802. [PubMed] [Google Scholar]
 - Clough J. R., Whittingham D. G. Metabolism of [14C]glucose by postimplantation mouse embryos in vitro. J Embryol Exp Morphol. 1983 Apr;74:133–142. [PubMed] [Google Scholar]
 - Corran P. H., Waley S. G. The tryptic peptides of rabbit muscle triose phosphate isomerase. Biochem J. 1974 Apr;139(1):1–10. doi: 10.1042/bj1390001. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Eber S. W., Dünnwald M., Belohradsky B. H., Bidlingmaier F., Schievelbein H., Weinmann H. M., Krietsch K. G. Hereditary deficiency of triosephosphate isomerase in four unrelated families. Eur J Clin Invest. 1979 Jun;9(3):195–202. doi: 10.1111/j.1365-2362.1979.tb00923.x. [DOI] [PubMed] [Google Scholar]
 - Eber S. W., Dünnwald M., Heinemann G., Hofstätter T., Weinmann H. M., Belohradsky B. H. Prevalence of partial deficiency of red cell triosephosphate isomerase in Germany--a study of 3000 people. Hum Genet. 1984;67(3):336–339. doi: 10.1007/BF00291364. [DOI] [PubMed] [Google Scholar]
 - Ehling U. H., Favor J., Kratochvilova J., Neuhäuser-Klaus A. Dominant cataract mutations and specific-locus mutations in mice induced by radiation or ethylnitrosourea. Mutat Res. 1982 Feb 22;92(1-2):181–192. doi: 10.1016/0027-5107(82)90222-6. [DOI] [PubMed] [Google Scholar]
 - Favor J. Characterization of dominant cataract mutations in mice: penetrance, fertility and homozygous viability of mutations recovered after 250 mg/kg ethylnitrosourea paternal treatment. Genet Res. 1984 Oct;44(2):183–197. doi: 10.1017/s0016672300026380. [DOI] [PubMed] [Google Scholar]
 - Gracy R. W. Triosephosphate isomerase from human erythrocytes. Methods Enzymol. 1975;41:442–447. doi: 10.1016/s0076-6879(75)41096-5. [DOI] [PubMed] [Google Scholar]
 - Johnson F. M., Lewis S. E. Electrophoretically detected germinal mutations induced in the mouse by ethylnitrosourea. Proc Natl Acad Sci U S A. 1981 May;78(5):3138–3141. doi: 10.1073/pnas.78.5.3138. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Kozak L. P., Quinn P. J. Evidence for dosage compensation of an X-linked gene in the 6-day embryo of the mouse. Dev Biol. 1975 Jul;45(1):65–73. doi: 10.1016/0012-1606(75)90241-9. [DOI] [PubMed] [Google Scholar]
 - LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
 - Mohrenweiser H. W., Fielek S. Elevated frequency of carriers for triosephosphate isomerase deficiency in newborn infants. Pediatr Res. 1982 Nov;16(11):960–963. doi: 10.1203/00006450-198211000-00012. [DOI] [PubMed] [Google Scholar]
 - Mohrenweiser H. W. Frequency of enzyme deficiency variants in erythrocytes of newborn infants. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5046–5050. doi: 10.1073/pnas.78.8.5046. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Neel J. V., Mohrenweiser H. W., Meisler M. H. Rate of spontaneous mutation at human loci encoding protein structure. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6037–6041. doi: 10.1073/pnas.77.10.6037. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Neel J. V., Satoh C., Hamilton H. B., Otake M., Goriki K., Kageoka T., Fujita M., Neriishi S., Asakawa J. Search for mutations affecting protein structure in children of atomic bomb survivors: preliminary report. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4221–4225. doi: 10.1073/pnas.77.7.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Peters J., Hopkinson D. A., Harris H. Genetic and non-genetic variation of triose phosphate isomerase isozymes in human tissues. Ann Hum Genet. 1973 Jan;36(3):297–312. doi: 10.1111/j.1469-1809.1973.tb00592.x. [DOI] [PubMed] [Google Scholar]
 - Rosa R., Prehu M. O., Calvin M. C., Badoual J., Alix D., Girod R. Hereditary triose phosphate isomerase deficiency: seven new homozygous cases. Hum Genet. 1985;71(3):235–240. doi: 10.1007/BF00284582. [DOI] [PubMed] [Google Scholar]
 - SCHNEIDER A. S., VALENTINE W. N., HATTORI M., HEINS H. L., Jr HEREDITARY HEMOLYTIC ANEMIA WITH TRIOSEPHOSPHATE ISOMERASE DEFICIENCY. N Engl J Med. 1965 Feb 4;272:229–235. doi: 10.1056/NEJM196502042720503. [DOI] [PubMed] [Google Scholar]
 - Satoh C., Neel J. V., Yamashita A., Goriki K., Fujita M., Hamilton H. B. The frequency among Japanese of heterozygotes for deficiency variants of 11 enzymes. Am J Hum Genet. 1983 Jul;35(4):656–674. [PMC free article] [PubMed] [Google Scholar]
 - Scopes R. K. Methods for starch-gel electrophoresis of sarcoplasmic proteins. An investigation of the relative mobilities of the glycolytic enzymes from the muscles of a variety of species. Biochem J. 1968 Mar;107(2):139–150. doi: 10.1042/bj1070139. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Singer B. N-nitroso alkylating agents: formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis. J Natl Cancer Inst. 1979 Jun;62(6):1329–1339. [PubMed] [Google Scholar]
 - Vives-Corrons J. L., Rubinson-Skala H., Mateo M., Estella J., Feliu E., Dreyfus J. C. Triosephosphate isomerase deficiency with hemolytic anemia and severe neuromuscular disease: familial and biochemical studies of a case found in Spain. Hum Genet. 1978 Jun 9;42(2):171–180. doi: 10.1007/BF00283637. [DOI] [PubMed] [Google Scholar]
 - Yuan P. M., Dewan R. N., Zaun M., Thompson R. E., Gracy R. W. Isolation and characterization of triosephosphate isomerase isozymes from human placenta. Arch Biochem Biophys. 1979 Nov;198(1):42–52. doi: 10.1016/0003-9861(79)90393-x. [DOI] [PubMed] [Google Scholar]
 - Yuan P. M., Talent J. M., Gracy R. W. A tentative elucidation of the sequence of human triosephosphate isomerase by homology peptide mapping. Biochim Biophys Acta. 1981 Dec 29;671(2):211–218. doi: 10.1016/0005-2795(81)90136-7. [DOI] [PubMed] [Google Scholar]
 
