Abstract
1. The stoicheiometries and affinities of ligand binding to isocitrate dehydrogenase were studied at pH 7.0, mainly by measuring changes in NADPH and protein fluorescence. 2. The affinity of the enzyme for NADPH is about 100-fold greater than it is for NADP+ in various buffer/salt solutions, and the affinities for both coenzymes are decreased by Mg2+, phosphate and increase in ionic strength. 3. The maximum binding capacity of the dimeric enzyme for NADPH, from coenzyme fluorescence and protein-fluorescence measurements, and also for NADP+, by ultrafiltration, is 2 mol/mol of enzyme. Protein-fluorescence titrations of the enzyme with NADP+ are apparently inconsistent with this conclusion, indicating that the increase in protein fluorescence caused by NADP+ binding is not proportional to fractional saturation of the binding sites. 4. Changes in protein fluorescence caused by changes in ionic strength and by the binding of substrates, Mg2+ or NADP+ (but not NADPH) are relatively slow, suggesting conformation changes. 5. In the presence of Mg2+, the enzyme binds isocitrate very strongly, and 2-oxoglutarate rather weakly. 6. Evidence is presented for the formation of an abortive complex of enzyme-Mg2+-isocitrate-NADPH in which isocitrate and NADPH are bound much more weakly than in their complexes with enzyme and Mg2+ alone. 7. The results are discussed in relation to the interpretation of the kinetic properties of the enzyme and its behaviour in the mitochondrion.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apps D. K. Complex formation between magnesium ions and pyridine nucleotide coenzymes. Biochim Biophys Acta. 1973 Sep 14;320(2):379–387. doi: 10.1016/0304-4165(73)90319-x. [DOI] [PubMed] [Google Scholar]
- Bowman R. H. Effects of diabetes, fatty acids, and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart. J Biol Chem. 1966 Jul 10;241(13):3041–3048. [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D. Coenzyme binding by triphosphopyridine nucleotide dependent isocitrate dehydrogenase from beef liver. Equilibrium and kinetics studies. Biochemistry. 1976 Oct 19;15(21):4703–4712. doi: 10.1021/bi00666a026. [DOI] [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D. NADP-linked isocitrate dehydrogenase from beef liver. Purification, quaternary structure and catalytic activity. Eur J Biochem. 1973 Aug 17;37(2):341–354. doi: 10.1111/j.1432-1033.1973.tb02993.x. [DOI] [PubMed] [Google Scholar]
- Colman R. F. Determination by gel filtration of association constants for metal-nucleotide interaction. Anal Biochem. 1972 Mar;46(1):358–363. doi: 10.1016/0003-2697(72)90430-7. [DOI] [PubMed] [Google Scholar]
- Colman R. F. Mechanisms for the oxidative decarboxylation of isocitrate: implications for control. Adv Enzyme Regul. 1975;13:413–433. doi: 10.1016/0065-2571(75)90028-x. [DOI] [PubMed] [Google Scholar]
- Colman R. F. Role of metal ions in reactions catalyzed by pig heart triphosphopyridine nucleotide-dependent isocitrate dehydrogenase. II. Effect on catalytic properties and reactivity of amino acid residues. J Biol Chem. 1972 Jan 10;247(1):215–223. [PubMed] [Google Scholar]
- Dalziel K., McFerran N., Matthews B., Reynolds C. H. Transient kinetics of nicotinamide-adenine dinucleotide phosphate-linked isocitrate dehydrogenase from bovine heart mitochondria. Biochem J. 1978 Jun 1;171(3):743–750. doi: 10.1042/bj1710743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrlich R. S., Colman R. F. Coenzyme binding by native and chemically modified pig heart triphosphopyridine nucleotide dependent isocitrate dehydrogenase. Biochemistry. 1975 Nov 4;14(22):5008–5016. doi: 10.1021/bi00693a035. [DOI] [PubMed] [Google Scholar]
- Kaplan N. O., Swartz M. N., Frech M. E., Ciotti M. M. PHOSPHORYLATIVE AND NONPHOSPHORYLATIVE PATHWAYS OF ELECTRON TRANSFER IN RAT LIVER MITOCHONDRIA. Proc Natl Acad Sci U S A. 1956 Aug;42(8):481–487. doi: 10.1073/pnas.42.8.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraupp O., Adler-Kastner L., Niessner H., Plank B. The effects of starvation and of acute and chronic alloxan diabetes on myocardial substrate levels and on liver glycogen in the rat in vivo. Eur J Biochem. 1967 Sep;2(2):197–214. doi: 10.1111/j.1432-1033.1967.tb00126.x. [DOI] [PubMed] [Google Scholar]
- Londesborough J. C., Dalziel K. Determination of the stability constant of the magnesium-ion complex of isocitrate. Eur J Biochem. 1971 Nov 11;23(1):194–197. doi: 10.1111/j.1432-1033.1971.tb01608.x. [DOI] [PubMed] [Google Scholar]
- Londesborough J. C., Dalziel K. The equilibrium constant of the isocitrate dehydrogenase reaction. Biochem J. 1968 Nov;110(2):217–222. doi: 10.1042/bj1100217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macfarlane N., Mathews B., Dalziel K. The purification and properties of NADP-dependent isocitrate dehydrogenase from ox-heart mitochondria. Eur J Biochem. 1977 Apr 15;74(3):553–559. doi: 10.1111/j.1432-1033.1977.tb11424.x. [DOI] [PubMed] [Google Scholar]
- Macfarlane N., Reynolds C. H., Matthews B., Dalziel K. Purification and molecular properties of NADP-linked isocitrate dehydrogenase from ox heart mitochondria [proceedings]. Biochem Soc Trans. 1977;5(3):790–793. doi: 10.1042/bst0050790. [DOI] [PubMed] [Google Scholar]
- Neely J. R., Denton R. M., England P. J., Randle P. J. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J. 1972 Jun;128(1):147–159. doi: 10.1042/bj1280147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulus H. A rapid and sensitive method for measuring the binding of radioactive ligands to proteins. Anal Biochem. 1969 Oct 15;32(1):91–100. doi: 10.1016/0003-2697(69)90107-9. [DOI] [PubMed] [Google Scholar]
- Reynolds C. H., Morris D. L., McKinley-McKee J. S. Complexes of liver alcohol dehydrogenase. Further studies on the rate of inactivation. Eur J Biochem. 1970 May 1;14(1):14–26. doi: 10.1111/j.1432-1033.1970.tb00255.x. [DOI] [PubMed] [Google Scholar]
- Sies H., Akerboom T. P., Tager J. M. Mitochondrial and cytosolic NADPH systems and isocitrate dehydrogenase indicator metabolites during ureogensis from ammonia in isolated rat hepatocytes. Eur J Biochem. 1977 Jan;72(2):301–307. doi: 10.1111/j.1432-1033.1977.tb11253.x. [DOI] [PubMed] [Google Scholar]
- Stein A. M., Stein J. H., Kirkman S. K. Diphosphopyridine nucleotide specific isocitric dehydrogenase of mammalian mitochondria. I. On the roles of pyridine nucleotide transhydrogenase and the isocitric dehydrogenases in the respiration of mitochondria of normal and neoplastic tissues. Biochemistry. 1967 May;6(5):1370–1379. doi: 10.1021/bi00857a020. [DOI] [PubMed] [Google Scholar]
- Stinson R. A., Holbrook J. J. Equilibrium binding of nicotinamide nucleotides to lactate dehydrogenases. Biochem J. 1973 Apr;131(4):719–728. doi: 10.1042/bj1310719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veech R. L., Eggleston L. V., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969 Dec;115(4):609–619. doi: 10.1042/bj1150609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veloso D., Guynn R. W., Oskarsson M., Veech R. L. The concentrations of free and bound magnesium in rat tissues. Relative constancy of free Mg 2+ concentrations. J Biol Chem. 1973 Jul 10;248(13):4811–4819. [PubMed] [Google Scholar]
- Villafranca J. J., Colman R. F. Role of metal ions in reactions catalyzed by pig heart triphosphopyridine nucleotide-dependent isocitrate dehydrogenase. I. Magnetic resonance and binding studies of the complexes of enzyme, manganous ion, and substrates. J Biol Chem. 1972 Jan 10;247(1):209–214. [PubMed] [Google Scholar]
- Watchorn E., McCance R. A. Subacute magnesium deficiency in rats. Biochem J. 1937 Aug;31(8):1379–1390. doi: 10.1042/bj0311379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
