Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1989 Jul;33(7):1081–1089. doi: 10.1128/aac.33.7.1081

Crystal and molecular structure of the antimalarial agent enpiroline.

J M Karle 1, I L Karle 1
PMCID: PMC176066  PMID: 2782859

Abstract

To identify common spatial and structural features of amino alcohol antimalarial agents with the eventual goal of designing more effective drugs and a better understanding of the mechanism of action of this class of antimalarial agents, the three-dimensional crystal and molecular structure of enpiroline, a new antimalarial agent active against chloroquine-resistant Plasmodium falciparum, was determined by X-ray crystallography and compared with the crystal structures of the cinchona alkaloids and of the new antimalarial agent WR 194,965. The aromatic rings of the phenyl-pyridine ring system of enpiroline are twisted from each other by approximately 18 degrees. The intramolecular aliphatic N-O distance in enpiroline was 2.80 A (1 A = 0.1 nm), which is close to the N-O distance found in the antimalarial cinchona alkaloids. Enpiroline contains both an intramolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms and an intermolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms of two neighboring molecules. One enantiomer of enpiroline superimposed best with quinine, and the other enantiomer of enpiroline superimposed best with quinidine, suggesting that both enantiomers of enpiroline possess antimalarial activity. Since a common feature of the crystal structures of the amino alcohol antimalarial agents is the formation of intermolecular hydrogen bonds, the common spatial direction of hydrogen bond formation indicates the potential ability of these antimalarial agents to bind to a common receptor site. The crystallographic parameters were as follows: C19H18F6N5O; Mr = 404.3; symmetry of unit cell, monoclinic; space group, P2(1)/a; parameters of unit cell---a = 9.454 +/- 0.004 A, b = 18.908 +/- 0.008 A, c = 10.300 +/- 0.004 A, and beta = 96.55 +/- 0.03 degrees: V (volume of unit cell) = 1829.2 A3; Z (number of molecules per unit cell) = 4; Dchi (calculated density) = 1.46 g cm-3; source of radiation, CuK alpha (lambda = 1.54178 A); mu (absorption coefficient) = 11.49 cm-1; F(000) (sum of atomic scattering factors at zero scattering angle) = 832; room temperature; final R = 8.7% for 1,798 reflections with [F0] > 3 sigma.

Full text

PDF
1081

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chien P. L., Cheng C. C. Difference in antimalarial activity between certain amino alcohol diastereomers. J Med Chem. 1976 Jan;19(1):170–172. doi: 10.1021/jm00223a032. [DOI] [PubMed] [Google Scholar]
  2. Cosgriff T. M., Boudreau E. F., Pamplin C. L., 3rd, Berman J. D., Shmuklarsky M. J., Canfield C. J. Evaluation of the 4-pyridinemethanol WR 180,409 (enpiroline) in the treatment of induced Plasmodium falciparum infections in healthy, non-immune subjects. Am J Trop Med Hyg. 1984 Sep;33(5):767–771. doi: 10.4269/ajtmh.1984.33.767. [DOI] [PubMed] [Google Scholar]
  3. Geary T. G., Jensen J. B. Lack of cross-resistance to 4-aminoquinolines in chloroquine-resistant Plasmodium falciparum in vitro. J Parasitol. 1983 Feb;69(1):97–105. [PubMed] [Google Scholar]
  4. Ginsburg H., Geary T. G. Current concepts and new ideas on the mechanism of action of quinoline-containing antimalarials. Biochem Pharmacol. 1987 May 15;36(10):1567–1576. doi: 10.1016/0006-2952(87)90038-4. [DOI] [PubMed] [Google Scholar]
  5. Howells R. E. The antimalarial action of chloroquine and mechanisms of resistance. Ann Trop Med Parasitol. 1987 Oct;81(5):629–637. doi: 10.1080/00034983.1987.11812164. [DOI] [PubMed] [Google Scholar]
  6. Karle I. L., Karle J. Anomalous dispersion of sulfur in quinidine sulfate, (C(20)H(25)N(2)O(2))(2)SO(4).2H(2)O: Implications for structure analysis. Proc Natl Acad Sci U S A. 1981 Oct;78(10):5938–5941. doi: 10.1073/pnas.78.10.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karle J. M., Karle I. L. Crystal and molecular structure of the antimalarial agent 4-(tert-butyl)-2-(tert-butylaminomethyl)-6-(4-chlorophenyl)phenol dihydrogen phosphate (WR 194,965 phosphate). Antimicrob Agents Chemother. 1988 Apr;32(4):540–546. doi: 10.1128/aac.32.4.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krogstad D. J., Schlesinger P. H., Gluzman I. Y. Antimalarials increase vesicle pH in Plasmodium falciparum. J Cell Biol. 1985 Dec;101(6):2302–2309. doi: 10.1083/jcb.101.6.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Payne D. Spread of chloroquine resistance in Plasmodium falciparum. Parasitol Today. 1987 Aug;3(8):241–246. doi: 10.1016/0169-4758(87)90147-5. [DOI] [PubMed] [Google Scholar]
  10. Phillips R. E., Warrell D. A., White N. J., Looareesuwan S., Karbwang J. Intravenous quinidine for the treatment of severe falciparum malaria. Clinical and pharmacokinetic studies. N Engl J Med. 1985 May 16;312(20):1273–1278. doi: 10.1056/NEJM198505163122001. [DOI] [PubMed] [Google Scholar]
  11. Schlesinger P. H., Krogstad D. J., Herwaldt B. L. Antimalarial agents: mechanisms of action. Antimicrob Agents Chemother. 1988 Jun;32(6):793–798. doi: 10.1128/aac.32.6.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schmidt L. H., Crosby R., Rasco J., Vaughan D. Antimalarial activities of various 4-pyridinemethanols with special attention to WR-172,435 and WR-180,409. Antimicrob Agents Chemother. 1978 Sep;14(3):420–435. doi: 10.1128/aac.14.3.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. White N. J., Looareesuwan S., Warrell D. A., Chongsuphajaisiddhi T., Bunnag D., Harinasuta T. Quinidine in falciparum malaria. Lancet. 1981 Nov 14;2(8255):1069–1071. doi: 10.1016/s0140-6736(81)91275-7. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES