Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Jul 1;245(1):151–157. doi: 10.1042/bj2450151

Selective internalization of arachidonic acid by endothelial cells.

E R Hall 1, C E Manner 1, J Carinhas 1, R Snopko 1, M Rafelson 1
PMCID: PMC1148094  PMID: 2822011

Abstract

The asymmetric distribution of phospholipids in bovine endothelial-cell membranes was probed with 2,4,6-trinitrobenzenesulphonate and purified phospholipase A2. The data suggest that phosphotidylethanolamine is primarily located in the inner lipid bilayer, as reported for other cell types. Stearic acid is taken up by the endothelial cells and is randomly distributed among the membrane phospholipids. In contrast, the polyunsaturated fatty acids (arachidonic, eicosatrienoic and eicosapentaenoic acids) have initial incorporation into the phosphatidylcholine fraction. These fatty acids then undergo a time-dependent transfer from phosphatidylcholine to phosphatidylethanolamine. Thus we propose that endothelial cells possess a mechanism for the selective internalization of polyunsaturated fatty acids.

Full text

PDF
151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alhenc-Gelas F., Tsai S. J., Callahan K. S., Campbell W. B., Johnson A. R. Stimulation of prostaglandin formation by vasoactive mediators in cultured human endothelial cells. Prostaglandins. 1982 Nov;24(5):723–742. doi: 10.1016/0090-6980(82)90040-5. [DOI] [PubMed] [Google Scholar]
  2. Banerjee N., Rosenthal M. D. High-affinity incorporation of 20-carbon polyunsaturated fatty acids by human skin fibroblasts. Biochim Biophys Acta. 1985 Jul 31;835(3):533–541. doi: 10.1016/0005-2760(85)90122-5. [DOI] [PubMed] [Google Scholar]
  3. Booyse F. M., Sedlak B. J., Rafelson M. E., Jr Culture of arterial endothelial cells: characterization and growth of bovine aortic cells. Thromb Diath Haemorrh. 1975 Dec 15;34(3):825–839. [PubMed] [Google Scholar]
  4. Colard O., Breton M., Bereziat G. Induction by lysophospholipids of CoA-dependent arachidonyl transfer between phospholipids in rat platelet homogenates. Biochim Biophys Acta. 1984 Mar 27;793(1):42–48. doi: 10.1016/0005-2760(84)90051-1. [DOI] [PubMed] [Google Scholar]
  5. Denning G. M., Figard P. H., Kaduce T. L., Spector A. A. Role of triglycerides in endothelial cell arachidonic acid metabolism. J Lipid Res. 1983 Aug;24(8):993–1001. [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Gitlin J. D., D'Amore P. A. Culture of retinal capillary cells using selective growth media. Microvasc Res. 1983 Jul;26(1):74–80. doi: 10.1016/0026-2862(83)90056-0. [DOI] [PubMed] [Google Scholar]
  8. Gordesky S. E., Marinetti G. V. The asymetric arrangement of phospholipids in the human erythrocyte membrane. Biochem Biophys Res Commun. 1973 Feb 20;50(4):1027–1031. doi: 10.1016/0006-291x(73)91509-x. [DOI] [PubMed] [Google Scholar]
  9. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knapp H. R., Reilly I. A., Alessandrini P., FitzGerald G. A. In vivo indexes of platelet and vascular function during fish-oil administration in patients with atherosclerosis. N Engl J Med. 1986 Apr 10;314(15):937–942. doi: 10.1056/NEJM198604103141501. [DOI] [PubMed] [Google Scholar]
  11. Kramer R. M., Deykin D. Arachidonoyl transacylase in human platelets. Coenzyme A-independent transfer of arachidonate from phosphatidylcholine to lysoplasmenylethanolamine. J Biol Chem. 1983 Nov 25;258(22):13806–13811. [PubMed] [Google Scholar]
  12. Kramer R. M., Pritzker C. R., Deykin D. Coenzyme A-mediated arachidonic acid transacylation in human platelets. J Biol Chem. 1984 Feb 25;259(4):2403–2406. [PubMed] [Google Scholar]
  13. Lands W. E., Samuelsson B. Phospholipid precursors of prostaglandins. Biochim Biophys Acta. 1968 Oct 22;164(2):426–429. doi: 10.1016/0005-2760(68)90168-9. [DOI] [PubMed] [Google Scholar]
  14. Magrum L. J., Johnston P. V. Effect of culture in vitro with eicosatetraenoic (20:4(n-6) ) and eicosapentaenoic (20:5(n-3) ) acids on fatty acid composition, prostaglandin synthesis and chemiluminescence of rat peritoneal macrophages. Biochim Biophys Acta. 1985 Oct 2;836(3):354–360. doi: 10.1016/0005-2760(85)90139-0. [DOI] [PubMed] [Google Scholar]
  15. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  16. Perret B., Chap H. J., Douste-Blazy L. Asymmetric distribution of arachidonic acid in the plasma membrane of human platelets. A determination using purified phospholipases and a rapid method for membrane isolation. Biochim Biophys Acta. 1979 Oct 5;556(3):434–446. doi: 10.1016/0005-2736(79)90131-7. [DOI] [PubMed] [Google Scholar]
  17. Punnonen K., Puustinen T., Jansen C. T. Incorporation and distribution of dihomo-gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid in cultured human keratinocytes. Prostaglandins. 1986 Feb;31(2):263–270. doi: 10.1016/0090-6980(86)90052-3. [DOI] [PubMed] [Google Scholar]
  18. Schick P. K., Kurica K. B., Chacko G. K. Location of phosphatidylethanolamine and phosphatidylserine in the human platelet plasma membrane. J Clin Invest. 1976 May;57(5):1221–1226. doi: 10.1172/JCI108390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Seigneuret M., Zachowski A., Hermann A., Devaux P. F. Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochemistry. 1984 Sep 11;23(19):4271–4275. doi: 10.1021/bi00314a002. [DOI] [PubMed] [Google Scholar]
  20. Seigneuret M., Zachowski A., Hermann A., Devaux P. F. Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochemistry. 1984 Sep 11;23(19):4271–4275. doi: 10.1021/bi00314a002. [DOI] [PubMed] [Google Scholar]
  21. Sicard B., Lagarde M. Incorporation of some eicosanoic acids into endothelial cells--effect on platelet inhibitory activity and prostacyclin production. Thromb Haemost. 1985 Apr 22;53(2):264–267. [PubMed] [Google Scholar]
  22. Sivarajan M., Hall E. R., Wu K. K., Rafelson M. E., Manner C. Regulation of intracellular arachidonate in normal and stressed endothelial cells. Biochim Biophys Acta. 1984 Sep 12;795(2):271–276. doi: 10.1016/0005-2760(84)90075-4. [DOI] [PubMed] [Google Scholar]
  23. Spector A. A., Hoak J. C., Fry G. L., Denning G. M., Stoll L. L., Smith J. B. Effect of fatty acid modification on prostacyclin production by cultured human endothelial cells. J Clin Invest. 1980 May;65(5):1003–1012. doi: 10.1172/JCI109752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spector A. A., Kaduce T. L., Figard P. H., Norton K. C., Hoak J. C., Czervionke R. L. Eicosapentaenoic acid and prostacyclin production by cultured human endothelial cells. J Lipid Res. 1983 Dec;24(12):1595–1604. [PubMed] [Google Scholar]
  25. Thomas J. M., Chap H., Douste-Blazy L. Calcium ionophore A 23187 induces arachidonic acid release from phosphatidylcholine in cultured human endothelial cells. Biochem Biophys Res Commun. 1981 Dec 15;103(3):819–824. doi: 10.1016/0006-291x(81)90884-6. [DOI] [PubMed] [Google Scholar]
  26. Weaver B. J., Holub B. J. The relative incorporation of arachidonic and eicosapentaenoic acids into human platelet phospholipids. Lipids. 1985 Nov;20(11):773–777. doi: 10.1007/BF02534401. [DOI] [PubMed] [Google Scholar]
  27. Wey H. E., Jakubowski J. A., Deykin D. Incorporation and redistribution of arachidonic acid in diacyl and ether phospholipids of bovine aortic endothelial cells. Biochim Biophys Acta. 1986 Oct 3;878(3):380–386. doi: 10.1016/0005-2760(86)90246-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES