Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Jun;400:545–574. doi: 10.1113/jphysiol.1988.sp017136

Phosphate inhibition of the human red cell sodium pump: simultaneous binding of adenosine triphosphate and phosphate.

J R Sachs 1
PMCID: PMC1191823  PMID: 2843640

Abstract

1. The Na+-K+ exchange carried out by the Na+ pump of human red cell ghosts and the Na+ + K+-dependent adenosine triphosphatase (Na+,K+-ATPase) activity of human red cell membranes are inhibited by MgPO4 rather than by free phosphate; similarly, the substrate for the K+-K+ exchange carried out by the pump is MgPO4 rather than free phosphate. 2. Inhibition of the Na+, K+-ATPase activity by MgPO4 is only partially competitive (mixed type) with ATP, and MgPO4 inhibition of the Na+-K+ exchange measured in Na+-free solutions and in K+-free ghosts which contain ATP at relatively high concentration is partially uncompetitive (mixed type) with external K+. 3. When measurements were made in K+-free ghosts and Na+-free solutions, or when Na+,K+-ATPase activity was measured at high ATP concentrations, inhibition by MgPO4 was non-competitive with cell Na+. This observation is not consistent with the Albers-Post reaction mechanism of the Na+ pump, and suggests the presence of an alternative reaction pathway in which ATP combines with the enzyme before phosphate is released. 4. MgPO4 monotonically inhibited the uncoupled Na+ efflux which occurs in solutions free of both Na+ and K+. The uncoupled efflux seemed to be more sensitive to MgPO4 inhibition than the Na+-K+ exchange. 5. Trinitrophenyladenosine-5'-tetraphosphate stimulated the K+-K+ exchange in the presence of MgPO4, and the characteristics of stimulation by TNP adenosine tetraphosphate were little different from the characteristics of stimulation by trinitrophenyladenosine-5'-triphosphate or -5'-diphosphate. The nucleotide binding site at which K+-K+ exchange is stimulated must be able to accommodate a nucleotide with a linear array of four phosphate groups.

Full text

PDF
545

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apell H. J., Nelson M. T., Marcus M. M., Läuger P. Effects of the ATP, ADP and inorganic phosphate on the transport rate of the Na+,K+-pump. Biochim Biophys Acta. 1986 May 9;857(1):105–115. doi: 10.1016/0005-2736(86)90103-3. [DOI] [PubMed] [Google Scholar]
  2. Askari A., Huang W. H. Reaction of (Na+ + K+)-dependent adenosine triphosphatase with inorganic phosphate. Regulation by Na+, K+, and nucleotides. J Biol Chem. 1984 Apr 10;259(7):4169–4176. [PubMed] [Google Scholar]
  3. Beaugé L. A., Cavieres J. J., Glynn, Grantham J. J. The effects of vanadate on the fluxes of sodium and potassium ions through the sodium pump. J Physiol. 1980 Apr;301:7–23. doi: 10.1113/jphysiol.1980.sp013184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyer P. D., Ariki M. 18O-probes of phosphoenzyme formation and cooperativity with sarcoplasmic reticulum ATPase. Fed Proc. 1980 May 15;39(7):2410–2414. [PubMed] [Google Scholar]
  5. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  6. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta. 1963 Feb 12;67:188–196. doi: 10.1016/0006-3002(63)91816-x. [DOI] [PubMed] [Google Scholar]
  7. Carilli C. T., Farley R. A., Perlman D. M., Cantley L. C. The active site structure of Na+- and K+-stimulated ATPase. Location of a specific fluorescein isothiocyanate reactive site. J Biol Chem. 1982 May 25;257(10):5601–5606. [PubMed] [Google Scholar]
  8. Eisner D. A., Richards D. E. Inhibition of the sodium pump by inorganic phosphate in resealed red cell ghosts. J Physiol. 1982 May;326:1–10. doi: 10.1113/jphysiol.1982.sp014172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisner D. A., Richards D. E. Stimulation and inhibition by ATP and orthophosphate of the potassium-potassium exchange in resealed red cell ghosts. J Physiol. 1983 Feb;335:495–506. doi: 10.1113/jphysiol.1983.sp014546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forbush B., 3rd Na+ movement in a single turnover of the Na pump. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5310–5314. doi: 10.1073/pnas.81.17.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fukushima Y., Post R. L. Binding of divalent cation to phosphoenzyme of sodium- and potassium-transport adenosine triphosphatase. J Biol Chem. 1978 Oct 10;253(19):6853–6862. [PubMed] [Google Scholar]
  12. Fukushima Y., Yamada S., Nakao M. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. J Biochem. 1984 Feb;95(2):359–368. doi: 10.1093/oxfordjournals.jbchem.a134616. [DOI] [PubMed] [Google Scholar]
  13. Garrahan P. J., Glynn I. M. The sensitivity of the sodium pump to external sodium. J Physiol. 1967 Sep;192(1):175–188. doi: 10.1113/jphysiol.1967.sp008295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glynn I. M., Hoffman J. F., Lew V. L. Some "partial reactions" of the sodium pump. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):91–102. doi: 10.1098/rstb.1971.0080. [DOI] [PubMed] [Google Scholar]
  16. Glynn I. M., Karlish S. J. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular sodium. J Physiol. 1976 Apr;256(2):465–496. doi: 10.1113/jphysiol.1976.sp011333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Glynn I. M., Richards D. E. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport. J Physiol. 1982 Sep;330:17–43. doi: 10.1113/jphysiol.1982.sp014326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hexum T., Samson F. E., Jr, Himes R. H. Kinetic studies of membrane (Na+-K+-Mg2+)-ATPase. Biochim Biophys Acta. 1970 Aug 15;212(2):322–331. doi: 10.1016/0005-2744(70)90213-5. [DOI] [PubMed] [Google Scholar]
  20. Kaplan J. H. Sodium pump-mediated ATP:ADP exchange. The sided effects of sodium and potassium ions. J Gen Physiol. 1982 Dec;80(6):915–937. doi: 10.1085/jgp.80.6.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Karlish S. J., Lieb W. R., Stein W. D. Combined effects of ATP and phosphate on rubidium exchange mediated by Na-K-ATPase reconstituted into phospholipid vesicles. J Physiol. 1982 Jul;328:333–350. doi: 10.1113/jphysiol.1982.sp014267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Karlish S. J., Stein W. D. Effects of atp or phosphate on passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles. J Physiol. 1982 Jul;328:317–331. doi: 10.1113/jphysiol.1982.sp014266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kropp D. L., Sachs J. R. Kinetics of the inhibition of the Na-K pump by tetrapropylammonium chloride. J Physiol. 1977 Jan;264(2):471–487. doi: 10.1113/jphysiol.1977.sp011678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moczydlowski E. G., Fortes P. A. Inhibition of sodium and potassium adenosine triphosphatase by 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) adenine nucleotides. Implications for the structure and mechanism of the Na:K pump. J Biol Chem. 1981 Mar 10;256(5):2357–2366. [PubMed] [Google Scholar]
  25. Plesner L., Plesner I. W. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. I. Substrate identity. Biochim Biophys Acta. 1981 May 6;643(2):449–462. doi: 10.1016/0005-2736(81)90088-2. [DOI] [PubMed] [Google Scholar]
  26. Ponzio G., Rossi B., Lazdunski M. Affinity labeling and localization of the ATP binding site in the (Na+,K+)-ATPase. J Biol Chem. 1983 Jul 10;258(13):8201–8205. [PubMed] [Google Scholar]
  27. Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
  28. Post R. L., Toda G., Rogers F. N. Phosphorylation by inorganic phosphate of sodium plus potassium ion transport adenosine triphosphatase. Four reactive states. J Biol Chem. 1975 Jan 25;250(2):691–701. [PubMed] [Google Scholar]
  29. Robinson J. D., Leach C. A., Davis R. L., Robinson L. J. Reaction sequences for (Na+ + K+)-dependent ATPase hydrolytic activities: new quantitative kinetic models. Biochim Biophys Acta. 1986 Aug 15;872(3):294–304. doi: 10.1016/0167-4838(86)90283-9. [DOI] [PubMed] [Google Scholar]
  30. Sachs J. R. Inhibition of the Na,K pump by vanadate in high-Na solutions. Modification of the reaction mechanism by external Na acting at a high-affinity site. J Gen Physiol. 1987 Aug;90(2):291–320. doi: 10.1085/jgp.90.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sachs J. R. Interaction of magnesium with the sodium pump of the human red cell. J Physiol. 1988 Jun;400:575–591. doi: 10.1113/jphysiol.1988.sp017137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sachs J. R. Kinetics of the inhibition of the Na-K pump by external sodium. J Physiol. 1977 Jan;264(2):449–470. doi: 10.1113/jphysiol.1977.sp011677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sachs J. R. Mechanistic implications of the potassium-potassium exchange carried out by the sodium-potassium pump. J Physiol. 1981 Jul;316:263–277. doi: 10.1113/jphysiol.1981.sp013786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sachs J. R. Potassium-potassium exchange as part of the over-all reaction mechanism of the sodium pump of the human red blood cell. J Physiol. 1986 May;374:221–244. doi: 10.1113/jphysiol.1986.sp016076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sachs J. R. The order of addition of sodium and release of potassium at the inside of the sodium pump of the human red cell. J Physiol. 1986 Dec;381:149–168. doi: 10.1113/jphysiol.1986.sp016319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sachs J. R. The order of release of sodium and addition of potassium in the sodium-potassium pump reaction mechanism. J Physiol. 1980 May;302:219–240. doi: 10.1113/jphysiol.1980.sp013239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schuurmans Stekhoven F. M., Swarts H. G., De Pont J. J., Bonting S. L. Studies on (Na+ + K+)-activated ATPase. XLV. Magnesium induces two low-affinity non-phosphorylating nucleotide binding sites per molecule. Biochim Biophys Acta. 1981 Dec 21;649(3):533–540. doi: 10.1016/0005-2736(81)90157-7. [DOI] [PubMed] [Google Scholar]
  38. Schuurmans Steknoven F. M., Swarts H. G., De Pont J. J., Bonting S. L. Properties of the Mg2+-induced low-affinity nucleotide binding site of (Na+ + K+)-activated ATPase. Biochim Biophys Acta. 1983 Aug 10;732(3):607–619. doi: 10.1016/0005-2736(83)90238-9. [DOI] [PubMed] [Google Scholar]
  39. Simons T. J. Potassium: potassium exchange catalysed by the sodium pump in human red cells. J Physiol. 1974 Feb;237(1):123–155. doi: 10.1113/jphysiol.1974.sp010474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Simons T. J. The interaction of ATP-analogues possessing a blocked gamma-phosphate group with the sodium pump in human red cells. J Physiol. 1975 Jan;244(3):731–739. doi: 10.1113/jphysiol.1975.sp010822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith R. L., Zinn K., Cantley L. C. A study of the vanadate-trapped state of the (Na,K)-ATPase. Evidence against interacting nucleotide site models. J Biol Chem. 1980 Oct 25;255(20):9852–9859. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES