Abstract
1. The Na+-K+ exchange carried out by the Na+ pump of human red cell ghosts and the Na+ + K+-dependent adenosine triphosphatase (Na+,K+-ATPase) activity of human red cell membranes are inhibited by MgPO4 rather than by free phosphate; similarly, the substrate for the K+-K+ exchange carried out by the pump is MgPO4 rather than free phosphate. 2. Inhibition of the Na+, K+-ATPase activity by MgPO4 is only partially competitive (mixed type) with ATP, and MgPO4 inhibition of the Na+-K+ exchange measured in Na+-free solutions and in K+-free ghosts which contain ATP at relatively high concentration is partially uncompetitive (mixed type) with external K+. 3. When measurements were made in K+-free ghosts and Na+-free solutions, or when Na+,K+-ATPase activity was measured at high ATP concentrations, inhibition by MgPO4 was non-competitive with cell Na+. This observation is not consistent with the Albers-Post reaction mechanism of the Na+ pump, and suggests the presence of an alternative reaction pathway in which ATP combines with the enzyme before phosphate is released. 4. MgPO4 monotonically inhibited the uncoupled Na+ efflux which occurs in solutions free of both Na+ and K+. The uncoupled efflux seemed to be more sensitive to MgPO4 inhibition than the Na+-K+ exchange. 5. Trinitrophenyladenosine-5'-tetraphosphate stimulated the K+-K+ exchange in the presence of MgPO4, and the characteristics of stimulation by TNP adenosine tetraphosphate were little different from the characteristics of stimulation by trinitrophenyladenosine-5'-triphosphate or -5'-diphosphate. The nucleotide binding site at which K+-K+ exchange is stimulated must be able to accommodate a nucleotide with a linear array of four phosphate groups.
Full text
PDF





























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apell H. J., Nelson M. T., Marcus M. M., Läuger P. Effects of the ATP, ADP and inorganic phosphate on the transport rate of the Na+,K+-pump. Biochim Biophys Acta. 1986 May 9;857(1):105–115. doi: 10.1016/0005-2736(86)90103-3. [DOI] [PubMed] [Google Scholar]
- Askari A., Huang W. H. Reaction of (Na+ + K+)-dependent adenosine triphosphatase with inorganic phosphate. Regulation by Na+, K+, and nucleotides. J Biol Chem. 1984 Apr 10;259(7):4169–4176. [PubMed] [Google Scholar]
- Beaugé L. A., Cavieres J. J., Glynn, Grantham J. J. The effects of vanadate on the fluxes of sodium and potassium ions through the sodium pump. J Physiol. 1980 Apr;301:7–23. doi: 10.1113/jphysiol.1980.sp013184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer P. D., Ariki M. 18O-probes of phosphoenzyme formation and cooperativity with sarcoplasmic reticulum ATPase. Fed Proc. 1980 May 15;39(7):2410–2414. [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta. 1963 Feb 12;67:188–196. doi: 10.1016/0006-3002(63)91816-x. [DOI] [PubMed] [Google Scholar]
- Carilli C. T., Farley R. A., Perlman D. M., Cantley L. C. The active site structure of Na+- and K+-stimulated ATPase. Location of a specific fluorescein isothiocyanate reactive site. J Biol Chem. 1982 May 25;257(10):5601–5606. [PubMed] [Google Scholar]
- Eisner D. A., Richards D. E. Inhibition of the sodium pump by inorganic phosphate in resealed red cell ghosts. J Physiol. 1982 May;326:1–10. doi: 10.1113/jphysiol.1982.sp014172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisner D. A., Richards D. E. Stimulation and inhibition by ATP and orthophosphate of the potassium-potassium exchange in resealed red cell ghosts. J Physiol. 1983 Feb;335:495–506. doi: 10.1113/jphysiol.1983.sp014546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forbush B., 3rd Na+ movement in a single turnover of the Na pump. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5310–5314. doi: 10.1073/pnas.81.17.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukushima Y., Post R. L. Binding of divalent cation to phosphoenzyme of sodium- and potassium-transport adenosine triphosphatase. J Biol Chem. 1978 Oct 10;253(19):6853–6862. [PubMed] [Google Scholar]
- Fukushima Y., Yamada S., Nakao M. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. J Biochem. 1984 Feb;95(2):359–368. doi: 10.1093/oxfordjournals.jbchem.a134616. [DOI] [PubMed] [Google Scholar]
- Garrahan P. J., Glynn I. M. The sensitivity of the sodium pump to external sodium. J Physiol. 1967 Sep;192(1):175–188. doi: 10.1113/jphysiol.1967.sp008295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Hoffman J. F., Lew V. L. Some "partial reactions" of the sodium pump. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):91–102. doi: 10.1098/rstb.1971.0080. [DOI] [PubMed] [Google Scholar]
- Glynn I. M., Karlish S. J. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular sodium. J Physiol. 1976 Apr;256(2):465–496. doi: 10.1113/jphysiol.1976.sp011333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Richards D. E. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport. J Physiol. 1982 Sep;330:17–43. doi: 10.1113/jphysiol.1982.sp014326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hexum T., Samson F. E., Jr, Himes R. H. Kinetic studies of membrane (Na+-K+-Mg2+)-ATPase. Biochim Biophys Acta. 1970 Aug 15;212(2):322–331. doi: 10.1016/0005-2744(70)90213-5. [DOI] [PubMed] [Google Scholar]
- Kaplan J. H. Sodium pump-mediated ATP:ADP exchange. The sided effects of sodium and potassium ions. J Gen Physiol. 1982 Dec;80(6):915–937. doi: 10.1085/jgp.80.6.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlish S. J., Lieb W. R., Stein W. D. Combined effects of ATP and phosphate on rubidium exchange mediated by Na-K-ATPase reconstituted into phospholipid vesicles. J Physiol. 1982 Jul;328:333–350. doi: 10.1113/jphysiol.1982.sp014267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlish S. J., Stein W. D. Effects of atp or phosphate on passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles. J Physiol. 1982 Jul;328:317–331. doi: 10.1113/jphysiol.1982.sp014266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kropp D. L., Sachs J. R. Kinetics of the inhibition of the Na-K pump by tetrapropylammonium chloride. J Physiol. 1977 Jan;264(2):471–487. doi: 10.1113/jphysiol.1977.sp011678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moczydlowski E. G., Fortes P. A. Inhibition of sodium and potassium adenosine triphosphatase by 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) adenine nucleotides. Implications for the structure and mechanism of the Na:K pump. J Biol Chem. 1981 Mar 10;256(5):2357–2366. [PubMed] [Google Scholar]
- Plesner L., Plesner I. W. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. I. Substrate identity. Biochim Biophys Acta. 1981 May 6;643(2):449–462. doi: 10.1016/0005-2736(81)90088-2. [DOI] [PubMed] [Google Scholar]
- Ponzio G., Rossi B., Lazdunski M. Affinity labeling and localization of the ATP binding site in the (Na+,K+)-ATPase. J Biol Chem. 1983 Jul 10;258(13):8201–8205. [PubMed] [Google Scholar]
- Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
- Post R. L., Toda G., Rogers F. N. Phosphorylation by inorganic phosphate of sodium plus potassium ion transport adenosine triphosphatase. Four reactive states. J Biol Chem. 1975 Jan 25;250(2):691–701. [PubMed] [Google Scholar]
- Robinson J. D., Leach C. A., Davis R. L., Robinson L. J. Reaction sequences for (Na+ + K+)-dependent ATPase hydrolytic activities: new quantitative kinetic models. Biochim Biophys Acta. 1986 Aug 15;872(3):294–304. doi: 10.1016/0167-4838(86)90283-9. [DOI] [PubMed] [Google Scholar]
- Sachs J. R. Inhibition of the Na,K pump by vanadate in high-Na solutions. Modification of the reaction mechanism by external Na acting at a high-affinity site. J Gen Physiol. 1987 Aug;90(2):291–320. doi: 10.1085/jgp.90.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Interaction of magnesium with the sodium pump of the human red cell. J Physiol. 1988 Jun;400:575–591. doi: 10.1113/jphysiol.1988.sp017137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Kinetics of the inhibition of the Na-K pump by external sodium. J Physiol. 1977 Jan;264(2):449–470. doi: 10.1113/jphysiol.1977.sp011677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Mechanistic implications of the potassium-potassium exchange carried out by the sodium-potassium pump. J Physiol. 1981 Jul;316:263–277. doi: 10.1113/jphysiol.1981.sp013786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Potassium-potassium exchange as part of the over-all reaction mechanism of the sodium pump of the human red blood cell. J Physiol. 1986 May;374:221–244. doi: 10.1113/jphysiol.1986.sp016076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. The order of addition of sodium and release of potassium at the inside of the sodium pump of the human red cell. J Physiol. 1986 Dec;381:149–168. doi: 10.1113/jphysiol.1986.sp016319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. The order of release of sodium and addition of potassium in the sodium-potassium pump reaction mechanism. J Physiol. 1980 May;302:219–240. doi: 10.1113/jphysiol.1980.sp013239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuurmans Stekhoven F. M., Swarts H. G., De Pont J. J., Bonting S. L. Studies on (Na+ + K+)-activated ATPase. XLV. Magnesium induces two low-affinity non-phosphorylating nucleotide binding sites per molecule. Biochim Biophys Acta. 1981 Dec 21;649(3):533–540. doi: 10.1016/0005-2736(81)90157-7. [DOI] [PubMed] [Google Scholar]
- Schuurmans Steknoven F. M., Swarts H. G., De Pont J. J., Bonting S. L. Properties of the Mg2+-induced low-affinity nucleotide binding site of (Na+ + K+)-activated ATPase. Biochim Biophys Acta. 1983 Aug 10;732(3):607–619. doi: 10.1016/0005-2736(83)90238-9. [DOI] [PubMed] [Google Scholar]
- Simons T. J. Potassium: potassium exchange catalysed by the sodium pump in human red cells. J Physiol. 1974 Feb;237(1):123–155. doi: 10.1113/jphysiol.1974.sp010474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simons T. J. The interaction of ATP-analogues possessing a blocked gamma-phosphate group with the sodium pump in human red cells. J Physiol. 1975 Jan;244(3):731–739. doi: 10.1113/jphysiol.1975.sp010822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith R. L., Zinn K., Cantley L. C. A study of the vanadate-trapped state of the (Na,K)-ATPase. Evidence against interacting nucleotide site models. J Biol Chem. 1980 Oct 25;255(20):9852–9859. [PubMed] [Google Scholar]
