ABSTRACT
The formation of spore-filled fruiting bodies in response to starvation represents a hallmark of many members of the order Myxococcales. Here, we present the complete 9.9-Mb genome of the fruiting type strain Melittangium boletus DSM 14713, the first member of this genus to have its genome sequenced.
GENOME ANNOUNCEMENT
In response to starvation, most members of the order Myxococcales initiate a developmental program that culminates in the formation of multicellular spore-filled fruiting bodies (1, 2). Interestingly, comparative genome investigations using genomes from eight different genera of the Myxococcales have indicated that the developmental program that ultimately results in fruiting body formation may not be highly conserved (3–5). Currently, the order Myxococcales consists of 3 suborders, with 55 species from 28 genera (6). So far, 21 complete and 36 draft Myxococcales genome sequences are available (3, 7–32), representing 18 different genera. Of the 10 genera without any genome data available, 3 genera (Pyxidicoccus, Aggregicoccus, and Melittangium) belong to the suborder Cystobacterineae.
The model organism Myxococcus xanthus, a member of the suborder Cystobacterineae, has been extensively studied to investigate the genetic basis underlying fruiting body formation (33, 34). To generate additional resources for accurate genome comparisons as well as to understand the evolution of the genetic program for fruiting body formation, we sequenced and annotated the complete genome of Melittangium boletus DSM 14713, which was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.
After confirming fruiting body formation with the formation of sporangioles on slime stalks by M. boletus DSM 14713, we collected genomic DNA (35) and sequenced it using PacBio single-molecule real-time (SMRT) sequencing (36) on the PacBio RSII platform at the Max Planck-Genome-Centre, Cologne, Germany. Three SMRT cells were used. Additionally, 16,186,722 100-bp paired-end Illumina reads were obtained using the HiSeq 2000 platform. After quality evaluation and filtering of 184,213 subreads, the assembly process using the hierarchical genome-assembly process (HGAP) assembly pipeline (37) resulted in one contig with an 83-fold coverage. This contig was inspected by YASS (Yet Another Similarity Searcher) (38) and manually closed using the Gepard dotplot generator (39), together with the Illumina reads and the Pilon tool (40), and finally oriented to DnaA as the first locus tag. The genome annotation was prepared using Prokka (41). BLASTP searches against the RefSeq database were used to assign functional annotation and identify possible frameshifts in genes. The corresponding genes were removed from the annotation.
The complete genome sequence of M. boletus DSM 14713 contains 9,910,441 bp, with a GC content of 68.4%. A total of 8,018 protein-coding sequences (CDSs) were identified, together with 69 tRNA genes and 12 rRNA operons. The size of the M. boletus genome is similar to those of other genomes of fruiting myxobacteria, which range in size from 9.0 Mb to 16.0 Mb. Aligning the M. boletus genome with other completely sequenced Myxococcales genomes using NUCmer (42) revealed that the genomes of Archangium gephyra DSM 2261 and Stigmatella aurantiaca DW4/3-1 most closely matched, with 39.8% and 16.8% of the sequences aligning, respectively.
The M. boletus genome sequence is the first sequence of this species and genus and will provide an important resource to delineate the genetic determinants involved in fruiting body formation and shared by members of the Cystobacterineae and possibly also by other Myxococcales outside this suborder.
Accession number(s).
The genome sequence was deposited in GenBank under accession number CP022163.
ACKNOWLEDGMENTS
The Max Planck Society supported this work. Bioinformatics support by the BMBF-funded project “Bielefeld-Gießen Center for Microbial Bioinformatics—BiGi (grant number 031A533)” within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged.
Footnotes
Citation Treuner-Lange A, Bruckskotten M, Rupp O, Goesmann A, Søgaard-Andersen L. 2017. Complete genome sequence of the fruiting myxobacterium Melittangium boletus DSM 14713. Genome Announc 5:e01262-17. https://doi.org/10.1128/genomeA.01262-17.
REFERENCES
- 1.Dawid W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427. doi: 10.1111/j.1574-6976.2000.tb00548.x. [DOI] [PubMed] [Google Scholar]
 - 2.Reichenbach H. 1999. The ecology of the myxobacteria. Environ Microbiol 1:15–21. doi: 10.1046/j.1462-2920.1999.00016.x. [DOI] [PubMed] [Google Scholar]
 - 3.Huntley S, Hamann N, Wegener-Feldbrügge S, Treuner-Lange A, Kube M, Reinhardt R, Klages S, Müller R, Ronning CM, Nierman WC, Søgaard-Andersen L. 2011. Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28:1083–1097. doi: 10.1093/molbev/msq292. [DOI] [PubMed] [Google Scholar]
 - 4.Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. 2017. An Evo-Devo perspective on multicellular development of myxobacteria. J Exp Zool B Mol Dev Evol 328:165–178. doi: 10.1002/jez.b.22727. [DOI] [PubMed] [Google Scholar]
 - 5.Huntley S, Wuichet K, Søgaard-Andersen L. 2014. Genome evolution and content in the myxobacteria, p 31–50. In Yang Z, Higgs P (ed), Myxobacteria—genomics, cellular and molecular biology. Caister Academic Press, Norfolk, United Kingdom. [Google Scholar]
 - 6.Landwehr W, Wolf C, Wink J. 2016. Actinobacteria and myxobacteria–two of the most important bacterial resources for novel antibiotics. Curr Top Microbiol Immunol 398:273–302. doi: 10.1007/82_2016_503. [DOI] [PubMed] [Google Scholar]
 - 7.Hwang C, Copeland A, Lucas S, Lapidus A, Barry K, Glavina Del Rio T, Dalin E, Tice H, Pitluck S, Sims D, Brettin T, Bruce DC, Detter JC, Han CS, Schmutz J, Larimer FW, Land ML, Hauser LJ, Kyrpides N, Lykidis A, Richardson P, Belieav A, Sanford RA, Löeffler FE, Fields MW. 2015. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an anaerobic, metal-reducing bacterium isolated from a contaminated subsurface environment. Genome Announc 3(1):e01449-14. doi: 10.1128/genomeA.01449-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 8.Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Eisen J, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103:15200–15205. doi: 10.1073/pnas.0607335103. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 9.Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Ruckert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorholter FJ, et al. 2007. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289. doi: 10.1038/nbt1354. [DOI] [PubMed] [Google Scholar]
 - 10.Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, Li SG, Zhang XB, Hu W, Wu ZH, Qin N, Li YZ. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 3:2101. doi: 10.1038/srep02101. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 11.Li ZF, Li X, Liu H, Liu X, Han K, Wu ZH, Hu W, Li FF, Li YZ. 2011. Genome sequence of the halotolerant marine bacterium Myxococcus fulvus HW-1. J Bacteriol 193:5015–5016. doi: 10.1128/JB.05516-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 12.Sanford RA, Cole JR, Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900. doi: 10.1128/AEM.68.2.893-900.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 13.Huntley S, Zhang Y, Treuner-Lange A, Kneip S, Sensen CW, Søgaard-Andersen L. 2012. Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J Bacteriol 194:3012–3013. doi: 10.1128/JB.00397-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 14.Ivanova N, Daum C, Lang E, Abt B, Kopitz M, Saunders E, Lapidus A, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Copeland A, Cheng JF, Chen F, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Brettin T, Rohde M, Göker M, Bristow J, Markowitz V, Eisen JA, Hugenholtz P, Kyrpides NC, Klenk HP. 2010. Complete genome sequence of Haliangium ochraceum type strain (SMP-2). Stand Genomic Sci 2:96–106. doi: 10.4056/sigs.69.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 15.Huntley S, Kneip S, Treuner-Lange A, Søgaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc 1(2):e00100-13. doi: 10.1128/genomeA.00100-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 16.Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA, Löffler FE. 2008. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS One 3:e2103. doi: 10.1371/journal.pone.0002103. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 17.Chen XJ, Han K, Feng J, Zhuo L, Li YJ, Li YZ. 2016. The complete genome sequence and analysis of a plasmid-bearing myxobacterial strain Myxococcus fulvus 124B02 (M 206081). Stand Genomic Sci 11:1. doi: 10.1186/s40793-015-0121-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 18.Garcia R, Gemperlein K, Müller R. 2014. Minicystis rosea gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium. Int J Syst Evol Microbiol 64:3733–3742. doi: 10.1099/ijs.0.068270-0. [DOI] [PubMed] [Google Scholar]
 - 19.Yamamoto E, Muramatsu H, Nagai K. 2014. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int J Syst Evol Microbiol 64:3360–3368. doi: 10.1099/ijs.0.063198-0. [DOI] [PubMed] [Google Scholar]
 - 20.Sharma G, Subramanian S. 2017. Unravelling the complete genome of Archangium gephyra DSM 2261T and evolutionary insights into myxobacterial chitinases. Genome Biol Evol 9:1304–1311. doi: 10.1093/gbe/evx066. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 21.Sharma G, Khatri I, Subramanian S. 2016. Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol Evol 8:2520–2529. doi: 10.1093/gbe/evw151. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 22.Sharma G, Narwani T, Subramanian S. 2016. Complete genome sequence and comparative genomics of a novel myxobacterium Myxococcus hansupus. PLoS One 11:e0148593. doi: 10.1371/journal.pone.0148593. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 23.Zaburannyi N, Bunk B, Maier J, Overmann J, Müller R. 2016. Genome analysis of the fruiting body-forming myxobacterium Chondromyces crocatus reveals high potential for natural product biosynthesis. Appl Environ Microbiol 82:1945–1957. doi: 10.1128/AEM.03011-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 24.Tonomura M, Ehara A, Suzuki H, Amachi S. 2015. Draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. Genome Announc 3(3):e00472-15. doi: 10.1128/genomeA.00472-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 25.Müller S, Willett JW, Bahr SM, Darnell CL, Hummels KR, Dong CK, Vlamakis HC, Kirby JR. 2013. Draft genome sequence of Myxococcus xanthus wild-type strain DZ2, a model organism for predation and development. Genome Announc 1(3):e00217-13. doi: 10.1128/genomeA.00217-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 26.Müller S, Willett JW, Bahr SM, Scott JC, Wilson JM, Darnell CL, Vlamakis HC, Kirby JR. 2013. Draft genome of a type 4 pilus defective Myxococcus xanthus strain, DZF1. Genome Announc 1(3):e00392-13. doi: 10.1128/genomeA.00392-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 27.Stevens DC, Young J, Carmichael R, Tan J, Taylor RE. 2014. Draft genome sequence of gephyronic acid producer Cystobacter violaceus strain Cb vi76. Genome Announc 2(6):e01299-14. doi: 10.1128/genomeA.01299-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 28.Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. 2014. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42:D553–D559. doi: 10.1093/nar/gkt1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 29.Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K, Dong DT, Amachi S. 2013. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 79:4635–4642. doi: 10.1128/AEM.00693-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 30.O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. doi: 10.1093/nar/gkv1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 31.Adaikpoh BI, Dowd SE, Stevens DC. 2017. Draft genome sequence of Archangium sp. strain Cb G35. Genome Announc 5(8):e01678-16. doi: 10.1128/genomeA.01678-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 32.Treuner-Lange A, Bruckskotten M, Rupp O, Goesmann A, Søgaard-Andersen L. 2017. Complete genome sequence of the fruiting myxobacterium Myxococcus macrosporus strain DSM 14697, generated by PacBio sequencing. Genome Announc 5(40):e01127-17. doi: 10.1128/genomeA.01127-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 33.Konovalova A, Petters T, Søgaard-Andersen L. 2010. Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34:89–106. doi: 10.1111/j.1574-6976.2009.00194.x. [DOI] [PubMed] [Google Scholar]
 - 34.Kroos L. 2017. Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet 33:3–15. doi: 10.1016/j.tig.2016.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 35.Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2:Unit 2.4. doi: 10.1002/0471142727.mb0204s56. [DOI] [PubMed] [Google Scholar]
 - 36.Au KF, Underwood JG, Lee L, Wong WH. 2012. Improving PacBio long read accuracy by short read alignment. PLoS One 7:e46679. doi: 10.1371/journal.pone.0046679. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 37.Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
 - 38.Noé L, Kucherov G. 2005. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res 33:W540–W543. doi: 10.1093/nar/gki478. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 39.Krumsiek J, Arnold R, Rattei T. 2007. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23:1026–1028. doi: 10.1093/bioinformatics/btm039. [DOI] [PubMed] [Google Scholar]
 - 40.Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi: 10.1371/journal.pone.0112963. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 41.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153. [DOI] [PubMed] [Google Scholar]
 - 42.Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12. doi: 10.1186/gb-2004-5-2-r12. [DOI] [PMC free article] [PubMed] [Google Scholar]
 
