Skip to main content
Chinese Journal of Hematology logoLink to Chinese Journal of Hematology
. 2018 Jan;39(1):50–52. [Article in Chinese] doi: 10.3760/cma.j.issn.0253-2727.2018.01.011

t(8;21)急性髓系白血病治疗后继发治疗相关性骨髓增生异常综合征一例报告并文献复习

Secondary myelodysplastic syndrome in a patient with de novo t(8;21) acute myeloid leukemia: a case report and literatures review

Dong Lin 1, Guangji Zhang 1, Yingchang Mi 1, Jianxiang Wang 1,
Editor: 刘 爽1
PMCID: PMC7343104  PMID: 29551034

由急性髓系白血病(AML)治疗后继发的骨髓增生异常综合征(MDS)或AML临床罕见。最近我们观察到1例AML伴t(8;21)患者经治疗后血液学和t(8;21)/RUNX1-RUNX1T1遗传学持续缓解2年,近期全血细胞逐渐下降,多参数流式细胞术(MFC)和WT1基因定量监测微小残留病(MRD)水平逐渐升高,最终确诊为治疗相关性MDS难治性贫血伴原始细胞增多2型(t-MDS RAEB-2)。现报道如下并进行文献复习。

病例资料

患者,女,36岁。因“乏力、鼻出血2个月”于2015年4月入院。初诊血常规:WBC 2.07×109/L,RBC 2.75×1012/L,HGB 94 g/L,PLT 36×109/L;外周血原始细胞占0.02。骨髓象:增生明显活跃,原始粒细胞占0.075,早幼粒细胞占0.040,异常中性中幼粒细胞占0.480;为AML-M2b骨髓象。白血病细胞免疫表型:CD34、HLA-DR、MPO、CD117、CD33、CD13及CD15阳性,CD19和CD56部分阳性。染色体核型:46,XX, t(8;21)(q22;q22)[16]/46,XX[4]。RUNX1-RUNX1T1融合基因定量41.3%,WT1定量126.91%。112种血液系统疾病相关基因突变深度测序(NGS)筛查发现WT1基因突变(第8外显子碱基突变致p.His448As,突变频率30%)。诊断:AML-M2伴t(8;21)(q22;q22)/RUNX1-RUNX1T1融合基因阳性(低危组)。予HAD(7+7+3)方案(高三尖杉酯碱2 mg·m−2·d−1,静脉滴注,第1~7天;阿糖胞苷100 mg·m−2·d−1,静脉滴注,第1~7天;柔红霉素40 mg·m−2·d−1,静脉滴注,第1~3天)诱导治疗1个疗程,获形态学完全缓解伴不完全血象恢复(CRi)。继予DA(柔红霉素40 mg·m−2·d−1,静脉滴注,第1~3天;阿糖胞苷1.5 g/m2,每12 h 1次,静脉滴注,第1~3天)、MA(米托蒽醌6 mg·m−2·d−1,静脉滴注,第1~3天;阿糖胞苷1.5 g/m2,每12 h 1次,静脉滴注,第1~3天)、HA(高三尖杉酯碱2.5 mg·m−2·d−1,静脉滴注,第1~6天;阿糖胞苷100 mg·m−2·d−1,静脉滴注,第1~6天)×2和MA(米托蒽醌6 mg·m−2·d−1,静脉滴注,第1~3天;阿糖胞苷100 mg·m−2·d−1,静脉滴注,第1~6天)方案缓解后治疗。2015年12月结束化疗后每3个月复查。疗程间歇及化疗结束后患者血常规一般不能完全恢复正常:HGB 80~118 g/L,WBC(0.94~4.20)×109/L,PLT(20~420)×109/L。2016年3月起骨髓WT1基因定量由阴转阳(>2%),增至4.8%,给予2个疗程地西他滨治疗后升至12%;骨髓MFC-MRD由0升至1.1%。2017年3月患者因“发热、咳嗽、白细胞和血小板持续减低”再入院。复查骨髓象:增生减低,粒系占0.445,红系占0.175,未见原始粒细胞及原始幼稚单核细胞;成熟单核细胞占0.085;全片未见巨核细胞。骨髓活检:增生较活跃,可见少量瘤细胞残留。染色体核型:45,XX,–7[6]/46,XX[1]。RUNX1-RUNX1T1融合基因定量0,WT1定量4.87%。予AA方案(阿克拉霉素20 mg/d,静脉滴注,第1~6天;阿糖胞苷100 mg·m−2·d−1,静脉滴注,第1~6天)治疗1个疗程。2017年4月复查血常规:WBC 3.7×109/L,RBC 2.66×1012/L,HGB 85 g/L,PLT 366×109/L;白细胞分类:杆状核粒细胞6%,分叶核粒细胞25%,淋巴细胞36%,单核细胞25%,原始细胞8%。骨髓象:增生活跃(−),粒系占0.410,红系占0.170,原始粒细胞占0.030,幼稚单核细胞占0.100,成熟单核细胞占0.090;全片未见巨核细胞。白血病细胞免疫表型:CD34、HLA-DR、CD38dim、CD117、CD13、CD33阳性和CD7部分阳性的异常髓系原始细胞占9.47%,单核细胞占30.42%。染色体核型:45,XX,−7[7]/46,XX[13]。7号染色体相关CEP7和D7S486基因染色体荧光原位杂交(FISH)检测缺失阳性率为64.6%,复查初诊时骨髓样本缺失阳性率为0。RUNX1-RUNX1T1融合基因定量0,WT1基因定量27.51%。112种血液系统疾病相关基因突变NGS筛查发现原有的WT1基因突变消失。诊断:治疗相关性MDS(RAEB-2)。目前正积极准备行异基因造血干细胞移植(allo-HSCT)。

讨论及文献复习

治疗相关性MDS/AML(t-MDS/AML)是肿瘤或免疫性疾病患者接受细胞毒性药物或放疗后继发的髓系肿瘤。国外报道t-MDS/AML占AML和MDS的10%~20%,多继发于淋巴瘤、多发性骨髓瘤、乳腺癌等治疗以后[1][2]。t-MDS/AML总体疗效差,5年生存率不足10%,是肿瘤治疗最严重的并发症[3]。随着越来越多的实体瘤、造血系统肿瘤患者生存期明显延长、甚至治愈,t-MDS/AML也日渐多见。由原发性AML治疗后继发的t-MDS/AML很少见,多为急性早幼粒细胞白血病(APL)患者[4][9],或接受自体造血干细胞移植(auto-HSCT)的AML[10][12]。检索发现,AML伴t(8;21)治疗后继发的t-MDS/AML仅有7例报道(表1[13][18]。本例t(8;21)AML患者经化疗后血液学和遗传学持续缓解2年,骨髓和外周血出现了新的原始细胞群,确诊为t-MDS(RAEB-2)。

表1. 已报道的7例t(8;21)急性髓系白血病(AML)治疗后继发t-MDS/AML病例临床特征及转归.

例号 年龄(岁) 性别 疾病类型 初诊染色体核型 诱导治疗 疗效 t-MDS/AML诊断时间(月) t-MDS/AML诊断时核型 诊断后生存期(月) 参考文献
1 42 AML-M2 t(8;21) 去甲氧柔红霉素+阿糖胞苷 CR 101 del(7)(p11.22p22), ?t(3;12) >24 Arana-Yi等[13]
2 39 AML-M2 –Y,t(3;11),t(8;21), inv (9) (p11q13), idem,del (10) (q24q26) 阿克拉霉素+阿糖胞苷+6-巯基嘌呤+泼尼松 CR 67 t(11;16) NA Hamamoto等[14]
3 10 AML-M2 –X,t(8;21) 依托泊苷+阿糖胞苷+左旋门冬酰胺酶 CR 7 t(11;18),i(7)(q10) 32 Roulston等[15]
4 3 MDS-RAEB t(8;21),del(7)(q32q34) 依托泊苷+阿糖胞苷+阿克拉霉素+左旋门冬酰胺酶 CR 38 del(7)(q11.2q22) 12 Roulston等[15]
5 24 NA t(8;21) NA CR 16 del(13q),del (20q),+21 80 Seiter等[16]
6 41 NA t(8;21) 柔红霉素+6-巯基嘌呤+依诺他宾+泼尼松 CR 39 复杂核型 9 Sakai等[17]
7 48 AML-M2 –Y,t (8;21) 米托蒽醌+阿糖胞苷 CR 13 t(3;21) 9 Bacher等[18]

注:t-MDS/AML:治疗相关性骨髓异常综合征/急性髓系白血病;MDS-RAEB:骨髓增生异常综合征难治性贫血伴原始细胞过多;NA:未描述

由原发性AML治疗后继发的t-MDS/AML诊断时需与AML早期复发相鉴别。复发是指原有白血病克隆重现,包括形态学、细胞遗传学和分子复发[19]。形态学复发是指完全缓解后外周血中白血病细胞重现,或骨髓原始细胞≥5%,或出现经病理证实的髓外浸润;如骨髓有新发的增生异常也应考虑复发。复发时原始细胞多突然增加,其形态和免疫表型与初诊时较为一致。但也可因化疗、获得附加遗传学异常和抗原漂移等而变异,有时不易确定。t-MDS/AML多有血常规进行性减低,骨髓常见增生异常的形态特点,伴或不伴原始细胞增多;此时的免疫表型多与初诊时的不同,或不能证实有白血病克隆。细胞遗传学和分子复发则是指原有的核型异常或异常分子标志重现。而t-MDS/AML时初诊肿瘤的异常核型和分子标志消失,并可获得新的遗传学异常。相比形态和免疫表型,遗传学特征更能明确恶性克隆的异质性和克隆演变,对区分AML复发抑或是t-MDS/AML更有意义。本例在定期复查时先观察到血常规持续下降,MRD逐渐升高,骨髓和外周血中的原始细胞形态和免疫表型与初诊时不同,更重要的是初诊时的t(8;21)和RUNX1-RUNX1T1基因标志始终阴性,原有的WT1突变基因消失,且出现新的-7异常核型,符合t-MDS的特点,可排除AML复发。

t-MDS/AML致病与放、化疗致突变作用有关,也与个体的遗传易感性有关,多数致病机制不明。t-MDS/AML大体可分两类。烷化剂、放疗t-MDS/AML较多见,发病率随年龄增大而增加,潜伏期较长(5~10年),常有不平衡性遗传物质丢失(主要涉及5号和7号染色体),或为复杂核型,以t-MDS多见,有多系病态造血和血细胞减少的骨髓衰竭表现,进展为AML较快,中位生存期低于1年。拓扑异构酶Ⅱ(Topo Ⅱ)抑制剂t-AML/MDS占20%~30%,见于各年龄阶段,潜伏期一般仅1~5年,起病即表现为AML,多无MDS病理过程,大多有重现性染色体平衡易位,常涉及11q23/MLL或21q22/RUNX1基因,或为t(15;17)、inv(16)/t(16;16)等,疗效仍不及具有相同遗传学异常的原发性AML。临床上大多数t-MDS/AML都接受过烷化剂、放疗和Topo Ⅱ抑制剂治疗,常难以区分。本例患者仅接受Topo Ⅱ抑制剂治疗,未接受烷化剂和放疗,潜伏期仅1年多,病态造血不明显,原始细胞比例也未达白血病的诊断标准,又有继发性-7克隆性异常,与经典的分类不一致。t-MDS的原始细胞多少不一,近一半患者的骨髓原始细胞<5%。无论是t-MDS还是t-AML预后均差,按形态和原始细胞比例人为划分为t-MDS或t-AML并无实际意义[2]

t-MDS/AML疗效不及原发性MDS/AML。Zeidan等[20]发现t-MDS和原发性MDS的中位生存期分别为19个月和46个月,差异有统计学意义(P<0.005)。t-AML与原发性AML尽管诱导治疗后CR率和诱导相关死亡率差异均无统计学意义,但长期疗效仍不及后者[21]。当前allo-HSCT是t-MDS/AML唯一可治愈的手段,应积极推荐。

总之,由AML治疗后继发的t-AML/AML虽然罕见,但重要性不言而喻。本病例的诊断过程提示我们,对缓解后长期血常规不能恢复正常或降低的患者应高度警惕白血病复发,或继发t-MDS/AML。应选择合适的“标志”、多“标志”监测MRD,相互印证,以及早发现复发或确定新的克隆。遗传学监测应多种技术并用,要涵盖细胞和分子水平,以明确克隆演进过程。这不仅有利于诊断,对治疗也有重要意义。

Funding Statement

基金项目:天津市科技计划(15ZXLCSY00010)

References

  • 1.Arber DA, Brunning RD, Le Beau MM, et al. WHO Classification of Hematopoietic and Lymphoid Tissue Tumor[M] 4th ed. Lyon: International Agency for Research on Cancer; 2008. Acute myeloid leukaemia and related precursor neoplasms; pp. 110–144. [Google Scholar]
  • 2.Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia[J] Semin Oncol. 2013;40(6):666–675. doi: 10.1053/j.seminoncol.2013.09.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Smith SM, Le BMM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series[J] Blood. 2003;102(1):43–52. doi: 10.1182/blood-2002-11-3343. [DOI] [PubMed] [Google Scholar]
  • 4.Ogasawara T, Yasuyama M, Kawauchi K. Therapy-related myelodysplastic syndrome with monosomy 5 after successful treatment of acute myeloid leukemia (M2)[J] Am J Hematol. 2005;79(2):136–141. doi: 10.1002/ajh.20329. [DOI] [PubMed] [Google Scholar]
  • 5.Masuya M, Katayama N, Inagaki K, et al. Two independent clones in myelodysplastic syndrome following treatment of acute myeloid leukemia[J] Int J Hematol. 2002;75(2):182–186. doi: 10.1007/BF02982025. [DOI] [PubMed] [Google Scholar]
  • 6.Kim YG, Cho SY, Park TS, et al. Therapy-related myelodysplastic syndrome/acute myeloid leukemia with del(7)(q22) in a patient with de novo AML[J] Ann Clin Lab Sci. 2011;41(1):79–83. [PubMed] [Google Scholar]
  • 7.Latagliata R, Petti MC, Fenu S, et al. Therapy-related myelodysplastic syndrome-acute myelogenous leukemia in patients treated for acute promyelocytic leukemia: an emerging problem[J] Blood. 2002;99(3):822–824. doi: 10.1182/blood.v99.3.822. [DOI] [PubMed] [Google Scholar]
  • 8.Zompi S, Viguié F. Therapy-related acute myeloid leukemia and myelodysplasia after successful treatment of acute promyelocytic leukemia[J] Leuk Lymphoma. 2002;43(2):275–280. doi: 10.1080/10428190290006044. [DOI] [PubMed] [Google Scholar]
  • 9.Zompi S, Legrand O, Bouscary D, et al. Therapy-related acute myeloid leukaemia after successful therapy for acute promyelocytic leukaemia with t(15;17): a report of two cases and a review of the literature[J] Br J Haematol. 2000;110(3):610–613. doi: 10.1046/j.1365-2141.2000.02240.x. [DOI] [PubMed] [Google Scholar]
  • 10.Pedersen-Bjergaard J, Andersen MK, Christiansen DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation[J] Blood. 2000;95(11):3273–3279. [PubMed] [Google Scholar]
  • 11.Armitage JO. Myelodysplasia and acute leukemia after autologous bone marrow transplantation[J] J Clin Oncol. 2000;18:945–946. doi: 10.1200/JCO.2000.18.5.945. [DOI] [PubMed] [Google Scholar]
  • 12.Vaxman I, Ram R, Gafter-Gvili A, et al. Secondary malignancies following high dose therapy and autologous hematopoietic cell transplantation-systematic review and meta-analysis[J] Bone Marrow Transplant. 2015;50(5):706–714. doi: 10.1038/bmt.2014.325. [DOI] [PubMed] [Google Scholar]
  • 13.Arana-Yi C, Block AW, Sait SN, et al. Therapy-related myelodysplastic syndrome and acute myeloid leukemia following treatment of acute myeloid leukemia: possible role of cytarabine[J] Leuk Res. 2008;32(7):1043–1048. doi: 10.1016/j.leukres.2007.11.006. [DOI] [PubMed] [Google Scholar]
  • 14.Hamamoto K, Hashimoto-Ninomiya A, Kishimoto Y, et al. Unbalanced 1;7 translocation in myelodysplastic syndrome following treatment of acute myeloblastic leukemia with an 8;21 translocation[J] Cancer Genet Cytogenet. 1994;74(1):35–39. doi: 10.1016/0165-4608(94)90026-4. [DOI] [PubMed] [Google Scholar]
  • 15.Roulston D, Anastasi J, Rudinsky R, et al. Therapy-related acute leukemia associated with t(11q23) after primary acute myeloid leukemia with t(8;21): a report of two cases[J] Blood. 1995;86(9):3613–3614. [PubMed] [Google Scholar]
  • 16.Seiter K, Feldman EJ, Sreekantaiah C, et al. Secondary acute myelogenous leukemia and myelodysplasia without abnormalities of chromosome 11q23 following treatment of acute leukemia with topoisomerase II-based chemotherapy[J] Leukemia. 2001;15(6):963–970. doi: 10.1038/sj.leu.2402122. [DOI] [PubMed] [Google Scholar]
  • 17.Sakai C, Matsubayashi K, Saotome T, et al. Therapy-related myelodysplastic syndrome with trisomy 1q due to der(1;7) and megakaryoblastic proliferation developing during complete remission of therapy-related acute myeloid leukemia with t(8;21)[J] Intern Med. 2004;43(7):582–586. doi: 10.2169/internalmedicine.43.582. [DOI] [PubMed] [Google Scholar]
  • 18.Bacher U, Schnittger S, Kern W, et al. Acute myeloid leukemia (AML) with t(8;21)(q22;q22) relapsing as AML with t(3;21)(q26;q22)[J] Cancer Genet Cytogenet. 2006;168(2):172–174. doi: 10.1016/j.cancergencyto.2006.02.011. [DOI] [PubMed] [Google Scholar]
  • 19.Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia[J] J Clin Oncol. 2003;21(24):4642–4649. doi: 10.1200/JCO.2003.04.036. [DOI] [PubMed] [Google Scholar]
  • 20.Zeidan AM, Al AN, Barnard J, et al. Comparison of clinical outcomes and prognostic utility of risk stratification tools in patients with therapy-related vs de novo myelodysplastic syndromes: a report on behalf of the MDS Clinical Research Consortium[J] Leukemia. 2017;31(6):1391–1397. doi: 10.1038/leu.2017.33. [DOI] [PubMed] [Google Scholar]
  • 21.Feldman EJ. Does therapy-related AML have a poor prognosis, independent of the cytogenetic/molecular determinants?[J] Best Pract Res Clin Haematol. 2011;24(4):523–526. doi: 10.1016/j.beha.2011.09.008. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology

RESOURCES