Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Nov;168(2):999–1001. doi: 10.1128/jb.168.2.999-1001.1986

Dominance relationships among mutant alleles of regulatory gene araC in the Escherichia coli B/R L-arabinose operon.

D E Sheppard
PMCID: PMC213582  PMID: 3023295

Abstract

The araBAD operon of Escherichia coli B/r is positively and negatively regulated by the araC+ regulatory protein. Mutations in gene araC can result in a variety of different regulatory phenotypes: araC null mutants (those carrying a null allele exhibiting no repressor or activator activity) are unable to achieve operon induction; araC-constitutive (araCc) mutants are partially constitutive, inducible by D-fucose, and resistant to catabolite repression; araCh mutants are hypersensitive to catabolite repression; and araCi mutants are resistant to catabolite repression. Various mutant alleles of gene araC were cloned into a derivative of plasmid pBR322 by in vivo recombination. Various heterozygous araC allelic combinations were constructed by transformation. Analysis of isomerase (araA) specific activity levels under various growth conditions indicated the following dominance relationships with regard to sensitivity to catabolite repression: araCh greater than araC+ greater than (araCc and araCi) greater than araC. It was concluded that the araCh protein may form a repressor complex that is refractory to removal by cyclic AMP receptor protein-cyclic AMP complex. This was interpreted in terms of the known nucleoprotein interactions between ara regulatory proteins and ara regulatory DNA.

Full text

PDF
999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beverin S., Sheppard D. E., Park S. S. D-Fucose as a gratuitous inducer of the L-arabinose operon in strains of Escherichia coli B-r mutant in gene araC. J Bacteriol. 1971 Jul;107(1):79–86. doi: 10.1128/jb.107.1.79-86.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dunn T. M., Hahn S., Ogden S., Schleif R. F. An operator at -280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5017–5020. doi: 10.1073/pnas.81.16.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunn T. M., Schleif R. Deletion analysis of the Escherichia coli ara PC and PBAD promoters. J Mol Biol. 1984 Nov 25;180(1):201–204. doi: 10.1016/0022-2836(84)90437-6. [DOI] [PubMed] [Google Scholar]
  4. Englesberg E., Wilcox G. Regulation: positive control. Annu Rev Genet. 1974;8:219–242. doi: 10.1146/annurev.ge.08.120174.001251. [DOI] [PubMed] [Google Scholar]
  5. Gendron R. P., Sheppard D. E. Mutations in the L-arabinose operon of Escherichia coli B-r that result in hypersensitivity to catabolite repression. J Bacteriol. 1974 Feb;117(2):417–421. doi: 10.1128/jb.117.2.417-421.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenfield L., Boone T., Wilcox G. DNA sequence of the araBAD promoter in Escherichia coli B/r. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4724–4728. doi: 10.1073/pnas.75.10.4724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hahn S., Dunn T., Schleif R. Upstream repression and CRP stimulation of the Escherichia coli L-arabinose operon. J Mol Biol. 1984 Nov 25;180(1):61–72. doi: 10.1016/0022-2836(84)90430-3. [DOI] [PubMed] [Google Scholar]
  8. Heffernan L., Bass R., Englesberg E. Mutations affecting catabolite repression of the L-arabinose regulon in Escherichia coli B/r. J Bacteriol. 1976 Jun;126(3):1119–1131. doi: 10.1128/jb.126.3.1119-1131.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heffernan L., Wilcox G. Effect of araC gene product on catabolite repression in the L-arabinose regulon. J Bacteriol. 1976 Jun;126(3):1132–1135. doi: 10.1128/jb.126.3.1132-1135.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hendrickson W., Schleif R. F. Regulation of the Escherichia coli L-arabinose operon studied by gel electrophoresis DNA binding assay. J Mol Biol. 1984 Sep 25;178(3):611–628. doi: 10.1016/0022-2836(84)90241-9. [DOI] [PubMed] [Google Scholar]
  11. Horwitz A. H., Heffernan L., Cass L., Miyada C. G., Wilcox G. Construction of pBR322-ara hybrid plasmids by in vivo recombination. Mol Gen Genet. 1980;179(3):615–625. doi: 10.1007/BF00271752. [DOI] [PubMed] [Google Scholar]
  12. Lee N., Carbon J. Nucleotide sequence of the 5' end of araBAD operon messenger RNA in Escherichia coli B/r. Proc Natl Acad Sci U S A. 1977 Jan;74(1):49–53. doi: 10.1073/pnas.74.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacInnes K. R., Sheppard D. E., Falgout B. Regulatory properties of araC(c) mutants in the L-arabinose operon of escherichia coliB/r. J Bacteriol. 1978 Jan;133(1):178–184. doi: 10.1128/jb.133.1.178-184.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ogden S., Haggerty D., Stoner C. M., Kolodrubetz D., Schleif R. The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3346–3350. doi: 10.1073/pnas.77.6.3346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sheppard D. E., Eleuterio M., Falgout B. Interaction between mutant alleles of araC of the Escherichia coli B/r L-arabinose operon. J Bacteriol. 1979 Sep;139(3):1085–1088. doi: 10.1128/jb.139.3.1085-1088.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sheppard D. E., Eleuterio M. Hypersensitivity to catabolite repression in the L-arabinose operon of Escherichia coli B/r is trans acting. J Bacteriol. 1976 May;126(2):1014–1016. doi: 10.1128/jb.126.2.1014-1016.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith B. R., Schleif R. Nucleotide sequence of the L-arabinose regulatory region of Escherichia coli K12. J Biol Chem. 1978 Oct 10;253(19):6931–6933. [PubMed] [Google Scholar]
  18. Wallace R. G., Lee N., Fowler A. V. The araC gene of Escherichia coli: transcriptional and translational start-points and complete nucleotide sequence. Gene. 1980 Dec;12(3-4):179–190. doi: 10.1016/0378-1119(80)90100-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES