Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Apr 1;243(1):235–239. doi: 10.1042/bj2430235

Purification and properties of formate dehydrogenase from Pseudomonas aeruginosa. Electron-paramagnetic-resonance studies on the molybdenum centre.

P M Gadsby, C Greenwood, A Coddington, A J Thomson, C Godfrey
PMCID: PMC1147837  PMID: 3038082

Abstract

Formate dehydrogenase from Pseudomonas aeruginosa contains molybdenum, a [4Fe-4S] cluster and cytochrome b. This paper reports the detection of molybdenum as Mo(V) by e.p.r. spectroscopy. In order to generate Mo(V) signals, addition of amounts of excess formate varying between 10- and 50-fold over enzyme, followed by 200-fold excess of sodium dithionite, were used. Two Mo(V) species were observed. One, the major component, has g1 = 2.012, g2 = 1.985 and g3 = 1.968, appeared at low concentrations of formate and increased linearly in intensity with increasing concentrations of formate up to 25-fold excess over the enzyme. At higher formate concentration this signal disappeared. The appearance and disappearance of this Mo(V) signal seems to parallel the state of reduction of the [4Fe-4S] clusters. A second, minor, Mo(V) species with g-values g1 = 1.996, g2 = 1.981 and g3 = 1.941 appears at a constant level during the formate-dithionite titration. No evidence has been obtained for nuclear hyperfine coupling to protons. The major Mo(V) species has unusual e.p.r. signals compared with other molybdenum-containing enzymes, except for that observed in the formate dehydrogenase from Methanobacterium formicicum [Barber, Siegel, Schauer, May & Ferry (1983) J. Biol. Chem. 258, 10839-10845]. The present work suggests that the enzyme is acting as a CO2 reductase, with dithionite as an electron donor to a [4Fe-4S] cluster, which in turn donates electrons to molybdenum, producing a Mo(V) species with CO2 bound to the metal.

Full text

PDF
235

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber M. J., Siegel L. M., Schauer N. L., May H. D., Ferry J. G. Formate dehydrogenase from Methanobacterium formicicum. Electron paramagnetic resonance spectroscopy of the molybdenum and iron-sulfur centers. J Biol Chem. 1983 Sep 25;258(18):10839–10845. [PubMed] [Google Scholar]
  2. Enoch H. G., Lester R. L. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem. 1975 Sep 10;250(17):6693–6705. [PubMed] [Google Scholar]
  3. George G. N., Bray R. C., Morpeth F. F., Boxer D. H. Complexes with halide and other anions of the molybdenum centre of nitrate reductase from Escherichia coli. Biochem J. 1985 May 1;227(3):925–931. doi: 10.1042/bj2270925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Godfrey C., Coddington A., Greenwood C., Thomson A. J., Gadsby P. M. Purification and properties of formate dehydrogenase from Pseudomonas aeruginosa. Characterization of haem and iron-sulphur centres by magnetic-circular-dichroism and electron-paramagnetic-resonance spectroscopy. Biochem J. 1987 Apr 1;243(1):225–233. doi: 10.1042/bj2430225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Godfrey C., Greenwood C., Thomson A. J., Bray R. C., George G. N. Electron-paramagnetic-resonance spectroscopy studies on the dissimilatory nitrate reductase from Pseudomonas aeruginosa. Biochem J. 1984 Dec 1;224(2):601–608. doi: 10.1042/bj2240601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jungermann K., Kirchniawy H., Thauer R. K. Ferredoxin dependent CO-2 reduction to formate in Clostridium pasteurianum. Biochem Biophys Res Commun. 1970 Nov 9;41(3):682–689. doi: 10.1016/0006-291x(70)90067-7. [DOI] [PubMed] [Google Scholar]
  7. Ljungdahl L. G. Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu Rev Microbiol. 1969;23:515–538. doi: 10.1146/annurev.mi.23.100169.002503. [DOI] [PubMed] [Google Scholar]
  8. Müller U., Willnow P., Ruschig U., Höpner T. Formate dehydrogenase from Pseudomonas oxalaticus. Eur J Biochem. 1978 Feb;83(2):485–498. doi: 10.1111/j.1432-1033.1978.tb12115.x. [DOI] [PubMed] [Google Scholar]
  9. Vincent S. P., Bray R. C. Electron-paramagnetic-resonance studies on nitrate reductase from Escherichia coli K12. Biochem J. 1978 Jun 1;171(3):639–647. doi: 10.1042/bj1710639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wagner R., Andreesen J. R. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch Microbiol. 1977 Sep 28;114(3):219–224. doi: 10.1007/BF00446865. [DOI] [PubMed] [Google Scholar]
  11. Yamamoto I., Saiki T., Liu S. M., Ljungdahl L. G. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem. 1983 Feb 10;258(3):1826–1832. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES