Abstract
牙种植术是目前修复牙列缺损和牙列缺失的主要治疗方案,但是种植体周围微生态失衡易造成种植体周围疾病的发生,进而导致种植失败。从20世纪80年代开始,种植体周围微生物的研究就成为了口腔微生物研究的热点之一。正常种植体周围微生物和种植体周围炎症相关微生物存在着差异,这些差异直接或间接增加了种植体周围疾病的风险,因此寻找种植体周围黏膜炎和种植体周围炎“核心微生物组”是目前研究的关键。
Keywords: 种植体, 微生物, 种植体周围黏膜炎, 种植体周围炎, 核心微生物组
Abstract
Dental implants represent the majority of treatment strategies used to replace missing teeth. However, peri-implant diseases caused by disturbance in peri-implant microbiological balance are among the reasons for implant failure. Since the 1980s, peri-implant microorganisms have been a hot research topic in dental microbiology. The bacterial ecology between the disease and health largely differs, which directly or indirectly increases the risk of peri-implant diseases. Accordingly, the determination of the ‘core microbiome’ of peri-implantitis and peri-implant mucositis is a key point of recent research.
Keywords: dental implants, microorganism, peri-implant mucositis, peri-implantitis, core microbiome
牙种植术被公认是目前牙列缺损和牙列缺失患者的首选治疗方案[1]–[2]。现在种植体的10年存活率已经高达92.8%~97.1%[3]–[4]。但是据报道在患者水平种植体的失败率为0~13.6%;种植体水平的失败率为0~8.3%[5];微生物因素和咬合过载可导致种植体失败[6],其中口腔微生物导致的种植体周围炎是种植体失败的主要原因[7]–[8]。种植体周围组织的炎症性疾病统称为种植体周围疾病。种植体周围黏膜炎是细菌作为病因引起的一种发生在功能性种植体周围软组织的可逆性炎症;种植体周围炎是细菌作为病因引起的功能性种植体周围组织的炎症反应并造成种植体周围骨支持组织破坏丧失的不可逆炎症[2],[7]。种植体周围炎的患病率为11%~47%[9],且Schwendicke等[10]的数据表示治疗一颗种植体的种植体周围炎与日常维护的费用相比,平均会多花费300欧元。因此种植体周围炎是目前临床亟待解决的问题。因此种植体周围微生物在维持种植体稳定中起着关键的作用。
1. 种植体周围疾病的危险因素
目前认为与种植体周围疾病相关的危险因素可以分为全身因素和局部因素。这些危险因素可以通过包括影响种植体周围微生物在内的多种途径加重疾病发生的风险。
1.1. 口腔卫生状况
口腔卫生状况差可以导致种植体周围菌斑堆积,进而加重种植体周围炎症发生的风险,已经有多个研究[11]–[13]显示种植体周围黏膜炎和种植体周围炎均与种植体周围的菌斑堆积密切相关。一项前瞻性研究[13]发现不良的口腔卫生状况与种植体周围骨丧失相关;种植术后10年,口腔卫生状况良好组与口腔卫生状况较差组的平均骨丧失量分别为0.65 mm及1.65 mm。Serino等[6]发现不当的口腔卫生措施也同种植体周围炎相关,48%发生种植体周围炎的种植体均属于口腔卫生措施不当。
1.2. 牙周炎病史
牙周炎患者较牙周健康患者而言种植体周围炎的发病率更高,探诊深度及周围骨丧失都更为严重,多数研究[14]–[18]表明牙周炎组种植体失败率亦高于牙周健康组。尽管有些研究发现种植体周围炎症相关的微生物与牙周炎相关微生物存在着一定的差异,但是微生物仍被认为是导致牙周炎患者容易发生种植体周围炎的重要因素。种植体周围炎症在多数情况下是一个混合厌氧感染,且微生物组成与慢性牙周炎龈下菌斑类似[19]–[22]。如de Waal等[23]通过临床病例对照研究发现牙龈卟啉单胞菌(Porphyromonas gingivalis)、福赛斯坦纳菌(Tannerella forsythia)、中间普雷沃菌(Prevotella intermedia)及具核梭杆菌(Fusobacterium nucleatum)等牙周炎的重要致病菌与种植体周围疾病相关,而伴放线聚集杆菌(Aggregatibacter actinomycetemcomitans)和葡萄球菌(Staphylococcus)与种植体周围疾病无明显关联。Casado等[21]系统回顾研究发现牙龈卟啉单胞菌、齿垢密螺旋体(Treponema denticola)及福赛斯坦纳菌和种植体周围炎呈中等相关性,而有一些证据表明中间普雷沃菌与种植体周围炎可能相关。Zhang等[24]发现牙周致病微生物普遍存在于健康或疾病状态下的牙周及种植体周围,其中牙龈卟啉单胞菌和具核梭杆菌与牙周炎密切相关,但与种植体周围炎无明显关联,伴放线聚集杆菌与牙周炎及种植体周围炎都相关。
1.3. 角化黏膜的体积
Roos-Jansåker等[25]发现角化黏膜的存在是种植体周围黏膜炎的危险因素。已有研究[25]–[26]表明角化膜体积除了对种植体周围软组织的炎症状态有一定影响外,对菌斑控制的影响更加显著。Zigdon等[26]发现种植体周围黏膜炎与角化黏膜的宽度及厚度存在一定的关联性。
1.4. 残留粘接剂
残留的粘接剂作为外来物引起炎症反应,可进一步促进种植体周围炎的发生。Wilson[27]通过口腔内镜探究了残余粘接剂和种植体周围疾病相关症状的关系,发现81%的病例中残余粘接剂同种植体周围疾病有显著相关性;在去除残留粘接剂后,74%的种植体周围疾病相关症状在内镜下消失。Linkevicius等[28]发现85%有残余粘接剂的种植体存在种植体周围疾病。Korsch等[29]对多余甲基丙烯酸酯粘接剂进行临床探究,结果表明早期未发现的多余粘接剂可使探诊出血及脓肿形成加重,从而增加炎症的发病率。残留的粘接剂可作为异物,成为口腔微生物定植区域,从而导致种植体周围疾病。Korsch等[30]收集了10位患者的残留粘接剂并通过16S rRNA基因测序法发现这类患者更易受到机会性感染微生物及致病微生物的侵袭。
1.5. 吸烟
吸烟可促进种植体周围骨吸收,增加种植体失败的风险。Moraschini等[31]发表了1篇包含1993—2013年15篇文献的系统评价及meta分析,结果显示吸烟人群边缘骨组织丧失及种植体失败率明显高于不吸烟人群。尼古丁可以改变种植体周围的微环境进而影响微生物的组成。Tsigarida等[32]运用了16S rRNA基因测序的方法研究了吸烟对健康及疾病状态下种植体周围微生物组的影响,发现与不吸烟人群相比,吸烟人群种植体周围微生物组的生物多样性降低,微生物数量也更多。在吸烟人群中,牙周及系统性致病菌如二氧化碳噬纤维菌属(Capnocytophaga)、密螺旋体属(Treponema)、丙酸杆菌属(Propionibacterium)、假单胞菌属(Pseudomonas)、乳杆菌属(Lactobacillus)和纤毛菌属(Leptotrichia)等的丰度更高;而在不吸烟人群中77种多隶属于链球菌属(Streptococcus)、月形单胞菌属(Selenomonas)和卟啉单胞菌属(Porphyromonas)的菌种丰度更高,且只在吸烟人群中检测到了乳酸杆菌属、丙酸杆菌属和罗氏菌属(Rothia)。
1.6. 放疗史
Karbach等[33]就种植体周围黏膜炎危险因素进行了队列研究,发现放疗史为种植体周围黏膜炎的危险因素。Ihde等[34]对放射治疗对口腔种植体的影响进行了系统回顾,也发现无论是动物模型还是临床患者放疗后种植体失败风险更大。放疗可以破坏唾液腺,造成口腔环境改变,进而通过影响种植体周围微生物增加种植体周围疾病发生的风险。
1.7. 系统性疾病
Heitz-Mayfield[35]关于种植体周围炎危险因素的系统回顾发现,种植体周围疾病同全身系统性疾病的关联有限,仅有1篇研究显示糖尿病能使种植体周围疾病的发生率增加。糖尿病影响种植体预后的主要原因是糖尿病患者骨形成水平降低,影响骨整合,也可能导致骨折。这种较差的骨质和骨量是由于血糖影响了骨细胞的活动;糖尿病患者体内血糖比正常人高,血液黏稠度大,免疫白细胞输送困难,细菌容易在这种高血糖的环境中生存,在一定程度上也加重了种植体周围疾病发生的风险。
2. 种植体周围微生物的研究
种植体周围疾病相关的微生物研究最早从20世纪80年代开始,最初使用电子显微镜和暗视野显微镜确定种植体周围组织微生物的形态,如Rams等[36]使用电子显微镜观察失败种植体周围的微生物,Olsen等[37]使用暗视野显微镜观察种植体失败部位的微生物群。20世纪80—90年代,研究者们开始采用体外培养、实时定量聚合酶链反应等技术研究种植体周围微生物,如de Waal等[23]收集了种植体周围炎患者和正常种植患者的龈下菌斑样本进行体外培养,分析患者病情及其他相关因素与微生物特点的关系。Socransky等[38]发明了DNA-DNA杂交技术。目前已经被广泛应用于种植体周围炎样本的分析,如Shibli等[39]通过棋盘DNA杂交技术分析了36种微生物在种植体周围菌斑的存在。Olsen等[37]提出了16S rRNA基因测序方法。de Silva等[40]利用Sanger测序法比较了健康种植体和有炎症的种植体龈下菌斑生物膜的组成。第二代测序技术提供了一种研究口腔微生物全新的视角和方法,最大的特点是高通量,从菌群、微生物群落的角度进行研究。Kumar等[1]使用焦磷酸16S rRNA基因测序的方法分析与种植体健康或失败相关的特征微生物。Tsigarida等[32]使用高通量测序的方法确定吸烟对健康或疾病状态的种植体周围微生物的影响。
3. 健康种植体周围的微生物
一个健康的种植体的愈合包括骨整合(osseointegration)和牙周整合(periointegration),在植入口腔后8~12周,基台穿龈部分的黏膜开始形成,3~6个月后,植体表面与周围牙槽骨发生直接的功能性、结构性连接[41]–[44]。一旦内部植体植入,伤口愈合后,在皮肤或黏膜屏障下一般不会发生植体感染[45]。然而口腔种植体一直暴露于包含700余种微生物的口腔环境[46],其植入口腔30 min后,细菌开始在种植体周围定植[19]。这个过程类似于牙面上形成生物膜,细菌通过由唾液来源的蛋白和多糖形成的获得性膜在种植体表面黏附[22],[41]。一个健康的种植体周围主要定植的微生物为口腔链球菌(Streptococcus oralis),其在龈上和龈下的微生物群中所占比例分别为45%和86%,同时,内氏放线菌(Actinomyces naeslundii)、口腔放线菌(Actinomyces oris)、迈氏放线菌(Actinomyces meyeri)、奈瑟菌属(Neisseria)、罗氏菌等均在种植体周围分离出[47]。此外,健康种植体周围还检出少量牙周致病菌,如具核梭杆菌、中间普雷沃菌、牙龈卟啉单胞菌、伴放线聚集杆菌、齿垢密螺旋体、福赛斯坦纳菌等[21],[48]。但牙周致病菌的检出并不一定伴随种植体周围的炎症发生,这与致病菌的量以及宿主的自身反应密切相关[41]。
4. 种植体周围疾病相关的微生物
现在,对于种植体正常和疾病状态下,其周围微生物与牙周组织周围微生物间的异同尚未有定论。可能和微生物检测技术的差异有关,从培养的方法,到聚合酶链式反应再到现在广泛使用的16S rRNA基因测序技术,随着技术方法的提升,对种植体周围疾病相关微生物的探究也越来越深入[49]。由于种植体周围疾病的发生与牙周炎有一定的相似性,因此种植体周围疾病的微生物常与牙周炎微生物进行比较。Maruyama等[50]对20例种植体周围炎及牙周炎患者的龈下菌斑进行测序,发现种植体周围炎独有的菌群有产黑色素普雷沃菌(Prevotella melaninogenica)、口普雷沃菌(Prevotella oris);牙周炎独有的菌群有缠结真杆菌(Eubacterium nodatum)、唾液链球菌(Streptococcus salivarius);二者共同的菌群为木糖氧化无色杆菌(Chromobacteria xylose)、具核梭杆菌、牙龈卟啉单胞菌、口腔链球菌、齿垢密螺旋体、微黄奈瑟菌(Neisseria subflava)、福赛斯坦纳菌等,其中具核梭杆菌、牙龈卟啉单胞菌、口腔链球菌、齿垢密螺旋体的检出量在牙周炎及种植体周围炎中均较高。Lafaurie等[51]发现,中间普雷沃菌、牙龈卟啉单胞菌、具核梭杆菌、福赛斯坦纳菌在种植体周围炎中有检出,对比正常种植体与种植体周围炎,牙龈卟啉单胞菌、福赛斯坦纳菌的检出差别不大,然而,中间普雷沃菌、革兰阴性杆菌及金黄色葡萄球菌(Staphylococcus aureus)的检出在种植体周围炎中增多;同时,种植体周围炎对比牙周炎发现,牙龈卟啉单胞菌的检出类似,中间普雷沃菌、福赛斯坦纳菌更多在牙周炎患者中检出,肠道杆菌(Enteric bacilli)在种植体周围炎中更多,并且铜绿假单胞菌(Pseudomonas aeruginosa)、金黄色葡萄球菌及白色念珠菌(Candida albicans)的检出均多于牙周炎患者。Cortelli等[52]发现在种植体周围炎中牙龈卟啉单胞菌和红色复合体的检出率高于种植体周围黏膜炎。Koyanagi等[53]则比较了种植体周围炎和牙周炎患者的菌群,结果发现种植体周围炎患者牙周菌群的多样性高于牙周炎患者。微小小单胞菌(Parvimonas micra)只在种植体周围炎患者中检出。Maruyama等[50]发现欧氏菌属(Olsenella)、鞘氨醇单胞菌属(Sphingomonas)、消化链球菌属(Peptostreptococcus)、奈瑟菌属(Neisseria)的丰度升高而脱硫微菌(Desulfomicrobium)的丰度降低。
5. 种植体周围微生物控制
目前种植体周围微生物控制的主要方法有:手动洁刮治、药物治疗、激光治疗、光动力治疗等[54]。药物治疗主要包括抑菌剂和局部及全身使用抗生素。药物治疗为辅助性治疗,同其他保守治疗或手术治疗联用,可更有效地减少种植体周围炎的症状[55]。就激光辅助治疗对种植体周围疾病的有效性进行系统回顾,发现当激光辅助手术治疗种植体周围炎时,较未辅助激光治疗组,探诊深度、临床附着水平、牙龈退缩程度及菌斑指数值无明显差别[56]。但也有部分文献具有相反的结论。当辅助非手术治疗时,探诊出血在短期内有所减少,然而尚无长期数据表明此种优势能长期维持。有少量的研究[56]显示激光辅助非手术治疗较常规治疗组周围骨丧失水平可能存在轻微上升。光动力治疗通过产生活性氧来杀灭兼性厌氧菌及专性厌氧菌,它通常作为种植体周围疾病的辅助治疗[57]–[58]。由于是一个相对新兴的治疗方法,光动力治疗的有效性缺乏长期实验数据的支持[5]。
6. 问题和展望
微生物在种植体周围疾病发生和发展中的作用已得到公认。目前引起种植体周围疾病的微生物还不完全明确,随着疾病“核心微生物组”的提出,种植体周围黏膜炎和种植体周围炎“核心微生物组”是目前研究的热点。此外,目前种植体材料还是以钛和钛合金为主,这些材料尤其是基台穿龈部位没有明显的抑制细菌生物膜的作用,因此在“核心微生物组”研究的基础上,研发新一代的种植体材料也将成为防治种植体周围疾病的关键之一。
Funding Statement
[基金项目] 国家重点研发计划(2016YFC1102701)
Supported by: The National Key Research and Development Program of China (2016YFC1102701).
References
- 1.Kumar PS, Mason MR, Brooker MR, et al. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants[J] J Clin Periodontol. 2012;39(5):425–433. doi: 10.1111/j.1600-051X.2012.01856.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Ting M, Craig J, Balkin BE, et al. Peri-implantitis: a comprehensive overview of systematic reviews[J] J Oral Implantol. 2018;44(3):225–247. doi: 10.1563/aaid-joi-D-16-00122. [DOI] [PubMed] [Google Scholar]
- 3.Albrektsson T, Donos N. Implant survival and complications. The Third EAO consensus conference 2012[J] Clin Oral Implants Res. 2012;23(Suppl 6):63–65. doi: 10.1111/j.1600-0501.2012.02557.x. [DOI] [PubMed] [Google Scholar]
- 4.Srinivasan M, Vazquez L, Rieder P, et al. Survival rates of short (6 mm) micro-rough surface implants: a review of literature and meta-analysis[J] Clin Oral Implants Res. 2014;25(5):539–545. doi: 10.1111/clr.12125. [DOI] [PubMed] [Google Scholar]
- 5.Chambrone L, Wang HL, Romanos GE. Antimicrobial photodynamic therapy for the treatment of periodontitis and peri-implantitis: an American Academy of Periodontology best evidence review[J] J Periodontol. 2018;89(7):783–803. doi: 10.1902/jop.2017.170172. [DOI] [PubMed] [Google Scholar]
- 6.Serino G, Ström C. Peri-implantitis in partially edentulous patients: association with inadequate plaque control[J] Clin Oral Implants Res. 2009;20(2):169–174. doi: 10.1111/j.1600-0501.2008.01627.x. [DOI] [PubMed] [Google Scholar]
- 7.Lindhe J, Meyle J. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology[J] J Clin Periodontol. 2008;35(8 Suppl):282–285. doi: 10.1111/j.1600-051X.2008.01283.x. [DOI] [PubMed] [Google Scholar]
- 8.Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases[J] J Clin Periodontol. 2008;35(8 Suppl):286–291. doi: 10.1111/j.1600-051X.2008.01274.x. [DOI] [PubMed] [Google Scholar]
- 9.Robertson K, Shahbazian T, MacLeod S. Treatment of peri-implantitis and the failing implant[J] Dent Clin North Am. 2015;59(2):329–343. doi: 10.1016/j.cden.2014.10.007. [DOI] [PubMed] [Google Scholar]
- 10.Schwendicke F, Tu YK, Stolpe M. Preventing and treating peri-implantitis: a cost-effectiveness analysis[J] J Periodontol. 2015;86(9):1020–1029. doi: 10.1902/jop.2015.150071. [DOI] [PubMed] [Google Scholar]
- 11.Ferreira SD, Silva GL, Cortelli JR, et al. Prevalence and risk variables for peri-implant disease in Brazilian subjects [J] J Clin Periodontol. 2006;33(12):929–935. doi: 10.1111/j.1600-051X.2006.01001.x. [DOI] [PubMed] [Google Scholar]
- 12.Renvert S, Polyzois I. Risk indicators for peri-implant mucositis: a systematic literature review[J] J Clin Periodontol. 2015;42(Suppl 16):S172–S186. doi: 10.1111/jcpe.12346. [DOI] [PubMed] [Google Scholar]
- 13.Costa FO, Takenaka-Martinez S, Cota LO, et al. Peri-implant disease in subjects with and without preventive maintenance: a 5-year follow-up[J] J Clin Periodontol. 2012;39(2):173–181. doi: 10.1111/j.1600-051X.2011.01819.x. [DOI] [PubMed] [Google Scholar]
- 14.Schou S, Holmstrup P, Worthington HV, et al. Outcome of implant therapy in patients with previous tooth loss due to periodontitis[J] Clin Oral Implants Res. 2006;17(Suppl 2):104–123. doi: 10.1111/j.1600-0501.2006.01347.x. [DOI] [PubMed] [Google Scholar]
- 15.Karoussis IK, Kotsovilis S, Fourmousis I. A comprehensive and critical review of dental implant prognosis in periodontally compromised partially edentulous patients[J] Clin Oral Implants Res. 2007;18(6):669–679. doi: 10.1111/j.1600-0501.2007.01406.x. [DOI] [PubMed] [Google Scholar]
- 16.Quirynen M, Abarca M, Van Assche N, et al. Impact of supportive periodontal therapy and implant surface roughness on implant outcome in patients with a history of periodontitis[J] J Clin Periodontol. 2007;34(9):805–815. doi: 10.1111/j.1600-051X.2007.01106.x. [DOI] [PubMed] [Google Scholar]
- 17.Ong CT, Ivanovski S, Needleman IG, et al. Systematic review of implant outcomes in treated periodontitis subjects[J] J Clin Periodontol. 2008;35(5):438–462. doi: 10.1111/j.1600-051X.2008.01207.x. [DOI] [PubMed] [Google Scholar]
- 18.Roccuzzo M, Bonino F, Aglietta M, et al. Ten-year results of a three arms prospective cohort study on implants in periodontally compromised patients. Part 2: clinical results[J] Clin Oral Implants Res. 2012;23(4):389–395. doi: 10.1111/j.1600-0501.2011.02309.x. [DOI] [PubMed] [Google Scholar]
- 19.Quirynen M, Vogels R, Pauwels M, et al. Initial subgingival colonization of ‘pristine’ pockets[J] J Dent Res. 2005;84(4):340–344. doi: 10.1177/154405910508400409. [DOI] [PubMed] [Google Scholar]
- 20.Elter C, Heuer W, Demling A, et al. Supra- and subgingival biofilm formation on implant abutments with different surface characteristics[J] Int J Oral Maxillofac Implants. 2008;23(2):327–334. [PubMed] [Google Scholar]
- 21.Casado PL, Otazu IB, Balduino A, et al. Identification of periodontal pathogens in healthy periimplant sites[J] Implant Dent. 2011;20(3):226–235. doi: 10.1097/ID.0b013e3182199348. [DOI] [PubMed] [Google Scholar]
- 22.Dorkhan M, Chávez de Paz LE, Skepö M, et al. Effects of saliva or serum coating on adherence of Streptococcus oralis strains to titanium[J] Microbiology. 2012;158(Pt 2):390–397. doi: 10.1099/mic.0.054536-0. [DOI] [PubMed] [Google Scholar]
- 23.de Waal YC, Eijsbouts HV, Winkel EG, et al. Microbial characteristics of peri-implantitis: a case-control study[J] J Periodontol. 2017;88(2):209–217. doi: 10.1902/jop.2016.160231. [DOI] [PubMed] [Google Scholar]
- 24.Zhang Q, Qin XY, Jiang WP, et al. Comparison of subgingival and peri-implant microbiome in chronic periodontitis [J] Chin J Dent Res. 2015;18(3):155–162. [PubMed] [Google Scholar]
- 25.Roos-Jansåker AM, Renvert H, Lindahl C, et al. Nine- to fourteen-year follow-up of implant treatment. Part Ⅲ: factors associated with peri-implant lesions[J] J Clin Periodontol. 2006;33(4):296–301. doi: 10.1111/j.1600-051X.2006.00908.x. [DOI] [PubMed] [Google Scholar]
- 26.Zigdon H, Machtei EE. The dimensions of keratinized mucosa around implants affect clinical and immunological parameters[J] Clin Oral Implants Res. 2008;19(4):387–392. doi: 10.1111/j.1600-0501.2007.01492.x. [DOI] [PubMed] [Google Scholar]
- 27.Wilson TG., Jr The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study[J] J Periodontol. 2009;80(9):1388–1392. doi: 10.1902/jop.2009.090115. [DOI] [PubMed] [Google Scholar]
- 28.Linkevicius T, Puisys A, Vindasiute E, et al. Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis[J] Clin Oral Implants Res. 2013;24(11):1179–1184. doi: 10.1111/j.1600-0501.2012.02570.x. [DOI] [PubMed] [Google Scholar]
- 29.Korsch M, Robra BP, Walther W. Cement-associated signs of inflammation: retrospective analysis of the effect of excess cement on peri-implant tissue[J] Int J Prosthodont. 2015;28(1):11–18. doi: 10.11607/ijp.4043. [DOI] [PubMed] [Google Scholar]
- 30.Korsch M, Walther W, Marten SM, et al. Microbial analysis of biofilms on cement surfaces: an investigation in cement-associated peri-implantitis[J] J Appl Biomater Funct Mater. 2014;12(2):70–80. doi: 10.5301/jabfm.5000206. [DOI] [PubMed] [Google Scholar]
- 31.Moraschini V, Barboza ED. Success of dental implants in smokers and non-smokers: a systematic review and meta-analysis[J] Int J Oral Maxillofac Surg. 2016;45(2):205–215. doi: 10.1016/j.ijom.2015.08.996. [DOI] [PubMed] [Google Scholar]
- 32.Tsigarida AA, Dabdoub SM, Nagaraja HN, et al. The influence of smoking on the peri-implant microbiome[J] J Dent Res. 2015;94(9):1202–1217. doi: 10.1177/0022034515590581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Karbach J, Callaway A, Kwon YD, et al. Comparison of five parameters as risk factors for peri-mucositis[J] Int J Oral Maxillofac Implants. 2009;24(3):491–496. [PubMed] [Google Scholar]
- 34.Ihde S, Kopp S, Gundlach K, et al. Effects of radiation therapy on craniofacial and dental implants: a review of the literature[J] Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(1):56–65. doi: 10.1016/j.tripleo.2008.06.014. [DOI] [PubMed] [Google Scholar]
- 35.Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and risk indicators[J] J Clin Periodontol. 2008;35(8 Suppl):292–304. doi: 10.1111/j.1600-051X.2008.01275.x. [DOI] [PubMed] [Google Scholar]
- 36.Rams TE, Link LC., Jr Microbiology of failing dental implants in humans: electron microscopic observations[J] J Oral Implantol. 1983;11(1):93–100. [PubMed] [Google Scholar]
- 37.Olsen GJ, Lane DJ, Giovannoni SJ, et al. Microbial ecology and evolution: a ribosomal RNA approach[J] Annu Rev Microbiol. 1986;40(40):337–365. doi: 10.1146/annurev.mi.40.100186.002005. [DOI] [PubMed] [Google Scholar]
- 38.Socransky SS, Smith C, Martin L, et al. “Checkerboard” DNA-DNA hybridization[J] Biotechniques. 1994;17(4):788–792. [PubMed] [Google Scholar]
- 39.Shibli JA, Melo L, Ferrari DS, et al. Composition of supra- and subgingival biofilm of subjects with healthy and diseased implants[J] Clin Oral Implants Res. 2008;19(10):975–982. doi: 10.1111/j.1600-0501.2008.01566.x. [DOI] [PubMed] [Google Scholar]
- 40.da Silva ES, Feres M, Figueiredo LC, et al. Microbiological diversity of peri-implantitis biofilm by Sanger sequencing [J] Clin Oral Implants Res. 2014;25(10):1192–1199. doi: 10.1111/clr.12231. [DOI] [PubMed] [Google Scholar]
- 41.Pokrowiecki R, Mielczarek A, Zareba T, et al. Oral microbiome and peri-implant diseases: where are we now[J] Ther Clin Risk Manag. 2017;13:1529–1542. doi: 10.2147/TCRM.S139795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Rego GF, Vidal ML, Viana GM, et al. Antibiofilm properties of model composites containing quaternary ammonium methacrylates after surface texture modification[J] Dent Mater. 2017;33(10):1149–1156. doi: 10.1016/j.dental.2017.07.010. [DOI] [PubMed] [Google Scholar]
- 43.Pjetursson BE, Heimisdottir K. Dental implants—are they better than natural teeth[J] Eur J Oral Sci. 2018;126(Suppl 1):81–87. doi: 10.1111/eos.12543. [DOI] [PubMed] [Google Scholar]
- 44.Araujo MG, Lindhe J. Peri-implant health[J] J Periodontol. 2018;89(Suppl 1):S249–S256. doi: 10.1002/JPER.16-0424. [DOI] [PubMed] [Google Scholar]
- 45.Campoccia D, Montanaro L, Arciola CR. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces[J] Biomaterials. 2013;34(33):8018–8029. doi: 10.1016/j.biomaterials.2013.07.048. [DOI] [PubMed] [Google Scholar]
- 46.Griffen AL, Beall CJ, Firestone ND, et al. CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome[J] PLoS One. 2011;6(4):e19051. doi: 10.1371/journal.pone.0019051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Zhang K, Cheng L, Wu EJ, et al. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate[J] J Dent. 2013;41(6):504–513. doi: 10.1016/j.jdent.2013.03.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Arciola CR, Campoccia D, Ehrlich GD, et al. Biofilm-based implant infections in orthopaedics[J] Adv Exp Med Biol. 2015;830:29–46. doi: 10.1007/978-3-319-11038-7_2. [DOI] [PubMed] [Google Scholar]
- 49.Padial-Molina M, López-Martínez J, O'Valle F, et al. Microbial profiles and detection techniques in peri-implant diseases: a systematic review[J] J Oral Maxillofac Res. 2016;7(3):e10. doi: 10.5037/jomr.2016.7310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Maruyama N, Maruyama F, Takeuchi Y, et al. Intraindividual variation in core microbiota in peri-implantitis and periodontitis[J] Sci Rep. 2014;4:6602. doi: 10.1038/srep06602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Lafaurie GI, Sabogal MA, Castillo DM, et al. Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review[J] J Periodontol. 2017;88(10):1066–1089. doi: 10.1902/jop.2017.170123. [DOI] [PubMed] [Google Scholar]
- 52.Cortelli SC, Cortelli JR, Romeiro RL, et al. Frequency of periodontal pathogens in equivalent peri-implant and periodontal clinical statuses[J] Arch Oral Biol. 2013;58(1):67–74. doi: 10.1016/j.archoralbio.2012.09.004. [DOI] [PubMed] [Google Scholar]
- 53.Koyanagi T, Sakamoto M, Takeuchi Y, et al. Comprehensive microbiological findings in peri-implantitis and periodontitis[J] J Clin Periodontol. 2013;40(3):218–226. doi: 10.1111/jcpe.12047. [DOI] [PubMed] [Google Scholar]
- 54.Smeets R, Henningsen A, Jung O, et al. Definition, etiology, prevention and treatment of peri-implantitis—a review[J] Head Face Med. 2014;10:34. doi: 10.1186/1746-160X-10-34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Javed F, Alghamdi AS, Ahmed A, et al. Clinical efficacy of antibiotics in the treatment of peri-implantitis[J] Int Dent J. 2013;63(4):169–176. doi: 10.1111/idj.12034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Mailoa J, Lin GH, Chan HL, et al. Clinical outcomes of using lasers for peri-implantitis surface detoxification: a systematic review and meta-analysis[J] J Periodontol. 2014;85(9):1194–1202. doi: 10.1902/jop.2014.130620. [DOI] [PubMed] [Google Scholar]
- 57.Meisel P, Kocher T. Photodynamic therapy for periodontal diseases: state of the art[J] J Photochem Photobiol B. 2005;79(2):159–170. doi: 10.1016/j.jphotobiol.2004.11.023. [DOI] [PubMed] [Google Scholar]
- 58.Al-Ahmad A, Tennert C, Karygianni L, et al. Antimicrobial photodynamic therapy using visible light plus water-filtered infrared-A (wIRA)[J] J Med Microbiol. 2013;62(Pt 3):467–473. doi: 10.1099/jmm.0.048843-0. [DOI] [PubMed] [Google Scholar]
