Skip to main content
Data in Brief logoLink to Data in Brief
. 2019 Mar 7;23:103720. doi: 10.1016/j.dib.2019.103720

Summary data of serum concentrations of 32 persistent organic pollutants in young adults in relation to summary scores of persistent organic pollutants

Jose R Suarez-Lopez a,, Myron D Gross b, Duk-Hee Lee c
PMCID: PMC6541699  PMID: 31193752

Abstract

This data article presents mean serum concentrations (wet weight and lipid standardized) of 32 persistent organic pollutants (POPs) detected in >75% of participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study across levels of POPs scores, and their corresponding coefficients of determination. POPs scores were calculated as: A) the sum of each participant's log-transformed POPs concentrations (∑ of log Pops], or B) as the sum of the participants' log-transformed concentrations of each POP divided by the groups' standard deviation of the corresponding log-transformed POP (POPs summary score. Scores were calculated for both wet weight and lipid standardized concentrations and for all 32 POPs and for PCBs and organochlorine pesticides separately. POPs summary scores analyses were used in the article “Organochlorine pesticides and polychlorinated biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up” [Suarez-Lopez et al., 2018].


Specifications table

Subject area Public Health
More specific subject area Environmental Health
Type of data Tables
How data was acquired Gas chromatography isotope dilution high-resolution mass spectrometry
Data format Analyzed data
Experimental factors Cross-sectional analyses
Experimental features Median concentrations (wet-weights and lipid standardized) of 32 persistent organic pollutants across categories of persistent organic pollutant scores and their corresponding coefficients of determination.
Data source location United States of America: Birmingham, AL; Chicago, IL; Minneapolis, MN; and Oakland, CA
Data accessibility Data is in the article
Related research article J.R. Suarez-Lopez, C.G. Clemesha, M. Porta, M.D. Gross, D.H. Lee, Organochlorine pesticides and polychlorinated biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up, Environ. Toxicol. Pharmacol. (2018)[1].
Value of the data
  • POPs composite scores are used in epidemiologic studies to reduce the number of associations tested, thus reducing the potential for spurious findings, and because the general population is exposed to a mixture of POPs.

  • This article presents coefficients of determination (R2) between specific POPs and various POPs scores, thus providing further exposure information of our published work using POPs summary scores.

  • This article provides deeper insight on POPs summary scores and their relationships with specific POPs exposure levels. These data can be used by investigators who are conducting analyses using POPs score analyses and provides information to compare exposure levels between the CARDIA study and other studies.

1. Data

Data is presented in 6 tables providing information on wet weight concentrations and lipid-standardized concentrations (median, 25th – 75th percentile, p for trend and R2) of persistent organic pollutants (POPs) in serum across quartiles of various POPs summary variables including 32 POP summary score, 8 organochlorine pesticide (OCP) summary score, 23 polychlorinated biphenyl (PCB) summary score, and sum of 32 log-transformed POPs based on both wet-weight and lipid standardized values.

2. Experimental design, materials and methods

2.1. Participants

POPs in serum were measured in samples collected in 1985–1986 (year-2 of follow-up) of 180 men and women from a nested case-control study within the Coronary Artery Risk Development in Young Adults (CARDIA) study [1], [2], [3]. Participants with diabetes (cases) consisted of 50% of participants (n = 90). However, cases must not have been diagnosed with diabetes during at year 0 or 2 of follow-up. The remaining 90 participants were frequency matched to cases on body mass index (BMI) and were randomly selected from those who had fasting glucose levels below 100 mg/dL at follow-up years 0, 7, 10, 15, and 20, had not been diagnosed with diabetes before year 20 of follow-up, and were not receiving glucose-lowering medications. Additional details of recruitment and participant selection been described in detail [1], [3].

2.2. Measurements

POPs concentrations of serum samples collected in year 2 of follow-up were measured using solid-phase extraction and final determination using gas chromatography isotope dilution high-resolution mass spectrometry [4], [5]. Nine OCPs, 35 PCB congeners, 10 polybrominated diphenyl ether (PBDE) congeners, and 1 polybrominated biphenyl (PBB) congener were measured. Of these, 32 POPs that were detected in at least 75% of participants (8 OCPs, 23 PCBs, and PBB-153, Table. 1) were included in the present article. Non-detectable concentrations were replaced with 50% of the detection limit.

Table 1.

Median (25th, 75th percentile) wet weight concentrations (pg/g) in serum across quartiles of 32 POP summary score. This list includes 32 POPs that were detectable in ≥75% of participants at year 2 of follow-up. Non-detectable values were replaced with 50% of the limit of detectability.

All Quartiles of 32 POP summary score
P-trend R2
Q1 Q2 Q3 Q4
Organochlorine pesticides
Hexachlorobenzene 154.1 (116.6–198.9) 112.3 (95, 151.6) 151.2 (115.9, 202.9) 161.1 (136.8, 203.7) 185.1 (149.4, 224.6) <0.001 0.13
Mirex 24.0 (13.1–44.2) 13.2 (6.6, 21.9) 20.4 (7.2, 31) 29.8 (15.8, 49.7) 35.5 (22.8, 99.6) <0.001 0.09
Oxychlordane 158.1 (116.4–209.7) 103.7 (82, 131.2) 135.8 (116.3, 164.6) 181.9 (152.5, 208.2) 237.6 (192.5, 337.1) <0.001 0.56
p,p’-DDE 3478 (2357–5586) 1682 (1134, 2636) 3834 (2832, 5134) 3520 (2802, 5260) 6249 (3826, 9799) <0.001 0.24
p,p’-DDT 132.7 (89.8–203.7) 90.9 (76.4, 130.2) 135.9 (96.3, 208.9) 136.3 (88.4, 185.6) 176.9 (124.5, 279.5) <0.001 0.16
Trans-nonachlor 183.5 (127.5–263.8) 101.7 (82.1, 137.8) 156.8 (128.4, 197.9) 222.7 (167, 264.3) 316.9 (233.7, 481.8) <0.001 0.47
β-hexachlorocyclohexane 69.5 (49.4–96.2) 45.8 (30.9, 58.2) 65.3 (50.2, 80.1) 77.1 (57.4, 98.9) 97.0 (75.7, 137.5) <0.001 0.33
Λ-hexachlorocyclohexane 44.5 (18.1–121) 20.6 (16.4, 67.1) 57.1 (17.2, 160.4) 56.3 (23.7, 88.8) 58.8 (33.4, 208.4) 0.118 0.01
PCBs
PCB74a 92.4 (62–145.3) 60.2 (44.3, 77.2) 91.6 (69.5, 119.2) 105.2 (68.2, 154.0) 144.1 (114.7, 183.5) <0.001 0.39
PCB87 6.8 (3.5–10.2) 4.2 (2.2, 6.1) 6.7 (3.0, 8.5) 7.0 (5.0, 8.7) 11.5 (7.1, 15.1) <0.001 0.22
PCB99 90.9 (60.5–136.7) 49.0 (37.8, 65.6) 85.2 (66.4, 115.3) 94.1 (80, 115.2) 160.0 (134.6, 218.6) <0.001 0.56
PCB105a 29.8 (20.4–45.8) 17.6 (11.7, 27.1) 30.6 (21.9, 40.1) 28.6 (20.5, 42.3) 48.5 (36.5, 60.2) <0.001 0.32
PCB118a 138 (92.4–212.9) 87.8 (58.1, 113.7) 146 (108.6, 185.6) 138.1 (108.7, 211.3) 231.5 (188.2, 282.0) <0.001 0.39
PCB146 37.7 (25.2–61.1) 19.1 (13.2, 21.3) 33.4 (27.5, 38.2) 48.3 (37, 56.3) 83.5 (63.5, 109.6) <0.001 0.61
PCB153 330.9 (220.8–496.8) 176.1 (146.3, 199.1) 290.9 (265.8, 328.9) 388.9 (351, 448.5) 628.0 (539.2, 783.4) <0.001 0.72
PCB156a 42.5 (27.7–60.4) 23.1 (18.3, 27.7) 35.6 (27.6, 43.8) 48.6 (41.8, 59) 74.5 (60.9, 109.9) <0.001 0.62
PCB157a 10.7 (7.1–15.4) 6.1 (4.8, 6.9) 8.5 (7.1, 11.7) 13.2 (10.1, 15.5) 18.8 (14.9, 25.8) <0.001 0.62
PCB138-158 253.8 (187.6–362.7) 135.4 (106.8, 162.5) 224.3 (202.9, 266) 273.3 (253.4, 334.4) 468.9 (387.1, 592.7) <0.001 0.67
PCB167a 13.5 (8.9–19.5) 7.3 (5.9, 8.6) 12.4 (9.4, 14) 15.3 (13.5, 18.9) 25.4 (19.1, 33) <0.001 0.54
PCB170 77.8 (57.2–123.8) 41.5 (33.6, 49.4) 66.8 (59.1, 76.4) 96.8 (85.3, 110.5) 153.4 (130.3, 195.7) <0.001 0.75
PCB177 19.6 (13.2–29.7) 9.1 (7.8, 11.5) 16.9 (15.3, 19.8) 22.2 (19.7, 25.1) 42.2 (32.9, 53.5) <0.001 0.68
PCB178 13.8 (9.7–22.3) 6.7 (5.1, 8.9) 11.6 (9.8, 12.9) 16.3 (14.8, 21.7) 32.7 (23.1, 42.6) <0.001 0.67
PCB180 205.1 (141.3–323.6) 105.8 (83.4, 128.2) 169.4 (144.5, 191.9) 244.1 (225.4, 299.7) 379.4 (334.1, 481) <0.001 0.75
PCB183 30.9 (21.1–44.6) 16.5 (12.4, 18.7) 29.1 (23.9, 31.2) 36.3 (30.9, 40) 62.5 (48.3, 76.2) <0.001 0.72
PCB187 74.4 (50.0–113.1) 34.8 (29.1, 45.2) 61.9 (52.9, 70.6) 86.4 (76.5, 109.2) 161.5 (115.2, 216.3) <0.001 0.67
PCB194 41.3 (27.3–65.9) 20.4 (15.2, 25.9) 32.8 (27.9, 45.4) 50.6 (40.4, 64.7) 83.4 (66.4, 104.8) <0.001 0.64
PCB195 11.5 (7.6–17.0) 5.8 (4.1, 6.7) 9.3 (7.9, 11.3) 13.1 (11.7, 15.5) 23.0 (18.0, 28.3) <0.001 0.73
PCB199 44.4 (28.6–68.2) 23.3 (15.4, 28.6) 32.6 (28.6, 43.1) 50.6 (45.0, 66.7) 82.1 (68.3, 111.2) <0.001 0.60
PCB196-203 47.5 (32.2–73.7) 24.6 (19, 29.9) 37.1 (33.2, 44.4) 54.3 (49.4, 67.0) 92.2 (75.8, 106.3) <0.001 0.69
PCB206 23.0 (16.0–36.0) 13.0 (9.7, 17.0) 19.0 (15.5, 23.5) 28.0 (22.0, 36.0) 40.5 (34.5, 56.0) <0.001 0.47
PCB209a 9.1 (6.0–14.7) 5.0 (3.8, 6.7) 6.9 (5.8, 9.4) 11.1 (8.4, 14.1) 17.7 (13.6, 23.2) <0.001 0.47
PBBs
PBB153 16.6 (10.9–24.2) 10.4 (6.6, 13.3) 12.5 (10.2, 22.4) 20.7 (15.8, 27.3) 21.4 (17, 28.8) 0.028 0.03
a

Dioxin-like PCBs.

Total cholesterol, and triglyceride concentrations were measured using an enzymatic assay. HDL concentrations were measured via precipitation using dextran sulfate-magnesium chloride on the ABA 200 Biochromatic device. LDL concentrations were calculated using the Friedewald equation [6]. Oxidized LDL concentrations were measured using a monoclonal antibody mAb-4E6–based competition ELISA (Mercodia, Uppsala, Sweden).

2.3. POPs scores and analysis

This article presents median POPs concentrations in serum across categories of POPs composite variables. Composite variables are used because the general population is exposed to a mixture of many POPs [7], and such variables substantially reduce the number of associations tested, thus reducing the potential for spurious findings. First, we created a summary score which consisted of the sum of log-transformed POPs concentrations for each individual (∑ of 32 log POPs). Then we created composite POPs variables that would not be heavily influenced by the most prevalent POPs, considering that the 8 most prevalent POPs had 25.6 times the concentration than the 8 least prevalent in our study. This “32 POP summary score” was defined as the sum of the participants' log-transformed concentrations of each of the 32 POPs divided by the groups’ standard deviation of the corresponding log-transformed POP (Σ[logPOPindividual/logPOP standard deviationgroup]). We created similar summary variables for 8 organochlorine pesticides (8 OCP summary score), and 23 PCBs (23 PCB summary score); summary variables were created for both wet weight and lipid standardized (POP concentration/total blood lipids) concentrations.

Table 1, Table 2, Table 3, Table 4, Table 5, Table 6 present the median and interquartile range of concentrations of each POP across quartiles of each of the POPs composite scores. Using linear regression, we calculated the p-trend for the associations between each POP concentration and POP composite score using continuous variables. We also calculated the coefficient of determination (R2, Pearson correlation) for each association.

Table 2.

POPs median (25th, 75th percentile) lipid-standardized concentrations (pg/g) in serum across quartiles of 32 POP summary score (lipid standardized). This list includes 32 POPs that were detectable in ≥75% of participants at year 2 of follow-up. Non-detectable values were replaced with 50% of the limit of detectability.

All Quartiles of 32 POP summary score
P-trend R2
Q1 Q2 Q3 Q4
Organochlorine pesticides
Hexachlorobenzene 30.0 (23.8, 38.7) 26.3 (20.8, 30.4) 30.7 (22.4, 41.4) 31.1 (26.4, 38.1) 33.5 (25.7, 42.3) 0.001 0.06
Mirex 4.6 (2.3, 9.2) 2.3 (1.4, 4.4) 4.7 (3.0, 8.1) 4.6 (2.5, 8.1) 8.1 (4.4, 12.1) 0.001 0.06
Oxychlordane 31.5 (24.5, 40.9) 22.2 (18.7, 28.4) 29.1 (23.7, 31.6) 37.0 (30.5, 42.2) 43.3 (37.5, 50.9) <0.001 0.46
p,p’-DDE 723.3 (455.8, 1150.4) 434.5 (240.1, 580.9) 641.5 (462.9, 886.9) 923.6 (555.6, 1436.7) 955.7 (752.8, 1566.8) <0.001 0.18
p,p’-DDT 26.1 (19.6, 38.7) 21.1 (14.8, 28.7) 25.9 (20.1, 38.5) 27.0 (20.1, 45.7) 28.1 (21.6, 50.1) <0.001 0.10
Trans-nonachlor 36.7 (26.5, 50.6) 22.9 (19.3, 30) 32.2 (26.5, 39.9) 43.3 (33.5, 49.7) 58.6 (43.6, 72.1) <0.001 0.37
β-hexachlorocyclohexane 13.7 (9.9, 18.4) 9.9 (7.0, 13.7) 11.9 (9.8, 14.9) 14.9 (12.0, 21.3) 18.1 (15.5, 25.9) <0.001 0.26
Λ-hexachlorocyclohexane 8.9 (3.7, 24.4) 5.4 (3.4, 14.1) 9.5 (3.5, 25.7) 10.1 (4.1, 18.2) 10.6 (5.0, 40.6) 0.258 0.01
PCBs
PCB74 3.1 (1.4, 4.6) 2.8 (1.4, 4) 2.7 (1.3, 4.9) 3.0 (1.4, 5.5) 3.8 (2.1, 5.3) <0.001 0.11
PCB87 0.8 (0.5, 1.3) 0.6 (0.5, 1.1) 0.9 (0.5, 1.6) 0.9 (0.5, 1.3) 0.8 (0.5, 1.7) 0.003 0.05
PCB99 1.3 (0.8, 2.0) 0.9 (0.5, 1.4) 1.3 (0.8, 1.9) 1.6 (0.8, 2.0) 1.6 (1.1, 2.7) <0.001 0.16
PCB105 0.6 (0.3, 1.1) 0.3 (0.3, 0.6) 0.6 (0.3, 0.9) 0.7 (0.3, 1.0) 1.2 (0.6, 1.9) <0.001 0.23
PCB118 6.2 (3.8, 8.6) 4.6 (2.7, 6.3) 5.6 (3.4, 8.1) 6.8 (4.3, 9.0) 8.3 (6, 11.4) <0.001 0.30
PCB146 67.7 (46.4, 92.2) 38.7 (32.0, 41.6) 57.3 (51.7, 66.5) 76.7 (68.2, 88.7) 118.5 (95.1, 143.1) <0.001 0.79
PCB153 49.5 (37.2, 72.7) 27.9 (23.9, 37.2) 45.2 (37.5, 49.6) 55.9 (48.9, 63.5) 85.6 (73.0, 111.6) <0.001 0.73
PCB156 2.0 (1.4, 3.1) 1.2 (1.0, 1.5) 1.7 (1.4, 2.2) 2.2 (2.0, 3.2) 3.8 (2.7, 4.3) <0.001 0.59
PCB157 2.9 (1.9, 4.4) 1.5 (1.1, 1.8) 2.3 (2.0, 2.8) 3.2 (2.9, 4.3) 5.5 (4.4, 7.9) <0.001 0.70
PCB138-158 0.6 (0.3, 1.5) 0.3 (0.3, 0.8) 0.9 (0.3, 1.6) 0.7 (0.3, 1.4) 1.5 (0.3, 2.2) <0.001 0.11
PCB167 8.2 (5.8, 12.1) 4.8 (4.1, 6.4) 6.8 (5.7, 8.4) 9.2 (8.0, 12.1) 14.0 (11.4, 16.6) <0.001 0.58
PCB170 0.4 (0.3, 0.8) 0.3 (0.2, 0.4) 0.4 (0.3, 0.6) 0.6 (0.3, 0.9) 1.0 (0.7, 1.3) <0.001 0.41
PCB177 1.6 (0.3, 2.8) 0.4 (0.3, 1.2) 1.4 (0.2, 1.8) 2.2 (0.3, 2.6) 3.6 (3.0, 5.1) <0.001 0.52
PCB178 14.7 (9.8, 21.4) 7.5 (6.2, 8.8) 12.6 (11.1, 15) 18.0 (14.8, 20.9) 29.0 (22.8, 36.4) <0.001 0.72
PCB180 15.8 (11.5, 23.4) 8.7 (7.8, 10.6) 14.0 (12.2, 15.1) 19.8 (16.2, 23.6) 28.6 (23.4, 34.7) <0.001 0.75
PCB183 3.8 (2.8, 5.7) 2.0 (1.6, 2.4) 3.4 (3.0, 3.8) 4.7 (3.8, 5.6) 7.5 (5.3, 8.7) <0.001 0.71
PCB187 6.1 (4.5, 8.8) 3.5 (2.9, 4.1) 5.5 (4.8, 6.3) 7.0 (5.8, 8.5) 10.7 (9.4, 13.4) <0.001 0.77
PCB194 4.6 (3.3, 6.9) 2.8 (2.2, 3.4) 4.1 (3.1, 5.4) 5.4 (4.2, 7.0) 7.8 (5.8, 9.9) <0.001 0.4
PCB195 8.4 (5.7, 12.0) 4.4 (3.6, 5.6) 7.5 (5.7, 9.2) 9.3 (7.6, 13.2) 14.5 (11.4, 19.4) <0.001 0.59
PCB199 9.6 (6.5, 13.4) 5.2 (4.7, 6.3) 8.2 (7.0, 9.6) 11.1 (9.6, 12.8) 14.9 (13.5, 21.0) <0.001 0.67
PCB196-203 2.3 (1.5, 3.3) 1.2 (0.9, 1.5) 1.8 (1.6, 2.3) 2.6 (2.3, 3.3) 3.8 (3.4, 4.9) <0.001 0.72
PCB206 1.8 (1.2, 2.7) 1.1 (0.8, 1.3) 1.5 (1.1, 2.0) 2.1 (1.7, 3.0) 3.0 (2.5, 4.0) <0.001 0.38
PCB209 0.28 (0.23, 0.32) 0.28 (0.24, 0.33) 0.26 (0.23, 0.32) 0.29 (0.24, 0.32) 0.26 (0.22, 0.31) 0.751 0.00
PBBs
PBB153 3.1 (2.2, 4.8) 2.2 (1.6, 3.2) 2.7 (2.0, 3.9) 4.1 (3, 5.8) 3.9 (2.8, 5.5) 0.04 0.02

Table 3.

POPs median (25th, 75th percentile) wet-weight concentrations (pg/g) in serum across quartiles of ∑ of 32 log POPs (based on wet weight concentrations). This list includes 32 POPs that were detectable in ≥75% of participants at year 2 of follow-up. Non-detectable values were replaced with 50% of the limit of detectability.

Quartiles of ∑ of 32 log POPs (wet weight concentrations)
P-trend R2
Q1 Q2 Q3 Q4
Organochlorine pesticides
Hexachlorobenzene 112.3 (95.0, 151.6) 152.6 (119.4, 206.4) 159.2 (134.8, 203.7) 171.0 (149.4, 222.4) <0.001 0.13
Mirex 13.2 (6.5, 21.9) 19.4 (7.2, 31.0) 30.1 (15.8, 44.3) 42.5 (22.8, 100.0) <0.001 0.10
Oxychlordane 103.7 (82, 131.2) 139.4 (116.3, 164.6) 181.9 (155.2, 208.2) 237.6 (192.5, 337.1) <0.001 0.54
p,p’-DDE 1682 (1134, 2636) 3764 (2632, 5063) 3538 (2902, 5611) 6249 (4025, 9799) <0.001 0.25
p,p’-DDT 90.9 (76.4, 130.2) 128.1 (93.9, 204.8) 142.3 (94.1, 185.6) 176.9 (124.5, 279.6) <0.001 0.16
Trans-nonachlor 101.7 (82.1, 137.8) 156.8 (128.4, 197.9) 220.4 (167, 256.4) 316.9 (239.5, 481.8) <0.001 0.47
β-hexachlorocyclohexane 45.79 (30.91, 58.22) 65.3 (50.17, 80.31) 76.89 (62.08, 98.85) 96.99 (75.67, 137.49) <0.001 0.33
Λ-hexachlorocyclohexane 20.6 (16.4, 67.1) 40.2 (15.4, 160.3) 57.3 (29.2, 88.8) 65.5 (33.4, 211.6) 0.04 0.02
PCBs
PCB74 60.2 (44.3, 77.2) 91.9 (73.2, 124.5) 105.2 (68.2, 154) 144.1 (114.7, 183.5) <0.001 0.36
PCB87 4.2 (2.15, 6.1) 6.5 (1.4, 8.3) 7.3 (5.7, 9) 11.2 (6.3, 15.1) <0.001 0.22
PCB99 49.0 (37.8, 65.6) 85.2 (66.4, 111.8) 95.8 (80.4, 122.9) 160.0 (134.6, 218.6) <0.001 0.54
PCB105 17.6 (11.7, 27.1) 28.8 (21.9, 40.9) 31.5 (20.7, 42.3) 48.5 (35.1, 60.2) <0.001 0.3
PCB118 87.8 (58.1, 113.7) 143.8 (108.6, 185.6) 144.4 (108.7, 211.3) 231.5 (188.2, 282) <0.001 0.37
PCB146 19.1 (13.2, 21.3) 33.4 (27.5, 38.7) 48.3 (36.7, 55.8) 83.5 (63.8, 109.6) <0.001 0.59
PCB153 176.1 (146.3, 199.1) 290.9 (265.8, 329.5) 388.9 (345.8, 461.7) 628.0 (539.2, 783.4) <0.001 0.71
PCB156 23.1 (18.3, 27.7) 36.2 (28.3, 46) 48.6 (40.8, 59) 74.5 (58.6, 109.9) <0.001 0.6
PCB157 6.1 (4.8, 6.9) 8.5 (7.2, 11.8) 12.0 (9.7, 15.5) 18.8 (14.6, 25.8) <0.001 0.6
PCB138-158 135.4 (106.8, 162.5) 227.1 (202.9, 267.5) 273.3 (253.4, 335.8) 468.9 (387.1, 592.7) <0.001 0.66
PCB167 7.3 (5.9, 8.6) 12.4 (9.4, 14.4) 15.4 (13, 18.9) 25.4 (19.1, 33) <0.001 0.52
PCB170 41.5 (33.6, 49.4) 67.6 (59.9, 76.8) 96.8 (85.2, 110.5) 153.4 (130.6, 195.7) <0.001 0.74
PCB177 9.1 (7.8, 11.5) 16.8 (15.2, 19.8) 22.2 (19.7, 24.7) 42.2 (32.9, 53.5) <0.001 0.67
PCB178 6.7 (5.1, 8.9) 11.7 (9.8, 13.5) 16.0 (14.0, 21.5) 32.7 (23.6, 42.6) <0.001 0.66
PCB180 105.8 (83.4, 128.2) 171.5 (148.0, 203.3) 244.0 (212.6, 299.7) 379.4 (339.8, 481) <0.001 0.74
PCB183 16.5 (12.4, 18.7) 28.5 (23.9, 30.8) 36.3 (31.0, 41.5) 62.5 (48.3, 76.2) <0.001 0.72
PCB187 34.8 (29.1, 45.2) 61.9 (52.9, 74.9) 85.4 (73.8, 108.6) 161.5 (116.3, 216.3) <0.001 0.66
PCB194 20.4 (15.2, 25.9) 34.1 (27.9, 46.1) 47.9 (39.9, 61.5) 83.4 (66.4, 104.8) <0.001 0.63
PCB195 5.8 (4.1, 6.7) 9.5 (8.3, 11.4) 12.9 (11.4, 15.2) 23.0 (18.1, 28.3) <0.001 0.72
PCB199 23.3 (15.4, 28.6) 35.8 (28.6, 44.7) 48.7 (44.2, 65.4) 82.1 (69.7, 111.2) <0.001 0.6
PCB196-203 24.6 (19, 29.9) 37.1 (33.2, 47.3) 53.5 (47.6, 62.4) 92.2 (76.9, 106.3) <0.001 0.69
PCB206 13.0 (9.7, 17.0) 19.5 (16.0, 24.5) 27.0 (21.0, 34.0) 40.5 (35.0, 56.0) <0.001 0.47
PCB209 5.0 (3.8, 6.7) 7.2 (5.8, 9.7) 11.0 (8.1, 13.8) 17.8 (13.7, 23.2) <0.001 0.47
PBBs
PBB153 10.4 (6.6, 13.3) 12.8 (10.2, 22.4) 20.7 (15.8, 27.3) 22.4 (17, 28.8) 0.03 0.03

Table 4.

POPs median (25th, 75th percentile) lipid-standardized concentrations (pg/g) in serum across quartiles of ∑ of 32 log POPs (based on lipid-standardized concentrations). This list includes 32 POPs that were detectable in ≥75% of participants at year 2 of follow-up. Non-detectable values were replaced with 50% of the limit of detectability.

Quartiles of ∑ of 32 log POPs (lipid standardized concentrations)
P-trend R-square
Q1 Q2 Q3 Q4
Organochlorine pesticides
Hexachlorobenzene 26.3 (20.8, 30.4) 30.4 (22.4, 37) 32.4 (26.9, 43.5) 33.2 (25.7, 42) 0.001 0.06
Mirex 2.3 (1.4, 4.2) 5.2 (3, 8.9) 4.5 (1.8, 8) 8.7 (4.7, 16.3) <0.001 0.07
Oxychlordane 23.3 (18.7, 28.5) 28.2 (23.7, 32.5) 35.9 (29.3, 41.8) 42.8 (37.5, 50.9) <0.001 0.42
P,p’-DDE 405.1 (240.1, 564.6) 662.4 (477.6, 886.9) 959.9 (555.6, 1458.0) 923.6 (752.8, 1566.8) <0.001 0.20
P,p’-DDT 21.6 (14.8, 28.7) 24.5 (19.6, 37.5) 27 (20.1, 38.5) 31.4 (22.0, 51.2) <0.001 0.11
Trans-nonachlor 23.6 (19.3, 30.0) 33.4 (25.6, 43) 40.6 (32.5, 49.7) 58.6 (43.6, 72.1) <0.001 0.35
β-hexachlorocyclohexane 9.3 (6.6, 13.8) 12.3 (10.4, 14.8) 14.9 (11.2, 21.3) 17.8 (15.1, 25.9) <0.001 0.27
Λ-hexachlorocyclohexane 4.5 (3.3, 11.2) 7.9 (3.4, 17.3) 11.9 (4.5, 34) 12.2 (5.9, 41.9) 0.061 0.02
PCBs
PCB74 2.4 (1.4, 4) 2.9 (1.5, 4.9) 3.0 (1.4, 4.4) 3.8 (1.6, 5.3) <0.001 0.11
PCB87 0.6 (0.4, 1.1) 0.9 (0.5, 1.2) 0.9 (0.5, 1.5) 0.8 (0.5, 1.7) 0.002 0.05
PCB99 0.9 (0.5, 1.4) 1.3 (0.8, 1.9) 1.6 (0.9, 2.1) 1.6 (1.1, 2.7) <0.001 0.16
PCB105 0.3 (0.3, 0.6) 0.5 (0.3, 0.9) 0.6 (0.3, 1.0) 1.2 (0.7, 1.9) <0.001 0.24
PCB118 4.1 (2.7, 6.3) 5.8 (3.4, 8.1) 7.3 (4.4, 9.0) 7.7 (5.8, 11.4) <0.001 0.30
PCB146 38.7 (32.0, 41.6) 55.8 (51.7, 64.8) 76.5 (68.2, 88.7) 118.5 (92.8, 143.1) <0.001 0.77
PCB153 27.9 (23.9, 36.8) 43.3 (38.5, 48.9) 59.3 (50.6, 71.3) 85.5 (72.4, 111.6) <0.001 0.72
PCB156 1.2 (1.0, 1.5) 1.7 (1.4, 2.2) 2.2 (1.9, 3.2) 3.7 (2.6, 4.3) <0.001 0.55
PCB157 1.5 (1.1, 1.8) 2.4 (2.1, 3.0) 3.2 (2.8, 4.3) 5.5 (4.4, 7.9) <0.001 0.68
PCB138-158 0.3 (0.3, 0.8) 0.8 (0.3, 1.4) 0.7 (0.3, 1.4) 1.5 (0.3, 2.2) <0.001 0.11
PCB167 4.8 (4.1, 6.4) 6.8 (5.7, 8.6) 9.5 (7.9, 12.2) 13.8 (11.3, 16.6) <0.001 0.55
PCB170 0.3 (0.2, 0.4) 0.4 (0.3, 0.6) 0.6 (0.3, 0.9) 1.0 (0.7, 1.3) <0.001 0.39
PCB177 0.7 (0.3, 1.2) 0.3 (0.2, 1.8) 2.1 (0.4, 2.6) 3.6 (2.8, 5.1) <0.001 0.49
PCB178 7.5 (6.2, 8.8) 12.6 (11.0, 14.5) 18.0 (15.1, 20.8) 29.0 (23.1, 36.4) <0.001 0.72
PCB180 8.7 (7.8, 10.6) 13.9 (11.9, 14.8) 18.5 (16.1, 22.3) 28.6 (23.4, 34.7) <0.001 0.72
PCB183 2.1 (1.6, 2.5) 3.4 (3.0, 3.8) 4.8 (3.8, 5.6) 7.5 (5.7, 8.7) <0.001 0.71
PCB187 3.5 (2.9, 4.2) 5.5 (4.8, 6.2) 7.1 (6, 8.6) 10.7 (9.4, 13.4) <0.001 0.77
PCB194 2.8 (2.2, 3.5) 4.1 (3.1, 5.2) 5.4 (4.2, 6.9) 7.8 (6.0, 9.9) <0.001 0.38
PCB195 4.4 (3.6, 5.7) 7.4 (5.7, 9.2) 9.3 (7.6, 12.4) 14.5 (11.5, 19.4) <0.001 0.56
PCB199 5.2 (4.7, 6.3) 8.0 (6.6, 9.6) 11.1 (9.6, 12.8) 14.9 (13.5, 21) <0.001 0.64
PCB196-203 1.2 (0.9, 1.5) 1.8 (1.6, 2.3) 2.7 (2.2, 3.1) 3.9 (3.4, 4.9) <0.001 0.70
PCB206 1.1 (0.8, 1.3) 1.7 (1.1, 2.0) 2.0 (1.6, 2.8) 3.1 (2.5, 4.0) <0.001 0.36
PCB209 0.3 (0.2, 0.3) 0.3 (0.2, 0.3) 0.3 (0.2, 0.3) 0.3 (0.2, 0.3) 0.827 0.00
PBBs
PBB153 2.2 (1.6, 3.2) 2.9 (2.1, 5.4) 3.8 (2.7, 5.1) 3.9 (2.8, 5.5) 0.148 0.01

Table 5.

OCP median (25th, 75th percentile) wet weight concentrations (pg/g) in serum across quartiles of 8 OCP summary score. This list includes 8 OCPs that were detectable in ≥75% of participants at year 2 of follow-up. Non-detectable values were replaced with 50% of the limit of detectability.

Quartiles of 8 OCP summary score
P-trend R-square
Q1 Q2 Q3 Q4
Organochlorine pesticides
Hexachlorobenzene 112.9 (98.7, 151.6) 159 (125.1, 191.5) 148.8 (120.9, 203.6) 196.7 (154.9, 241.2) <0.001 0.16
Mirex 6.8 (6.6, 20.2) 20.7 (13.2, 31) 30.2 (21.5, 54) 42.9 (22.9, 76.8) <0.001 0.12
Oxychlordane 110.5 (87.3, 131.2) 152.4 (126.8, 181.9) 172.9 (135.8, 217.8) 234 (188.3, 338.6) <0.001 0.46
P,p’-DDE 1831 (1134, 2513) 2954 (2346, 3928) 4025 (3021, 5561) 7072 (4800, 9799) <0.001 0.31
P,p’-DDT 89.8 (72.1, 123) 123.3 (85.7, 155.7) 153.5 (104.0, 218.4) 228.0 (157.7, 319.4) <0.001 0.25
Trans-nonachlor 101.7 (82.1, 151.3) 165 (126.3, 205.1) 205.5 (156.8, 263.3) 335.2 (250.3, 488.0) <0.001 0.43
β-hexachlorocyclohexane 44.4 (29.6, 62.4) 58.2 (48.9, 72.1) 79.9 (61.4, 98.9) 107.4 (82.5, 140.4) <0.001 0.42
Λ-hexachlorocyclohexane 17.9 (7.0, 40.3) 32.0 (18.1, 99.3) 55.7 (34.2, 102.1) 115.2 (43.9, 395.3) <0.001 0.07

Table 6.

PCB median (25th, 75th percentile) wet weight concentrations (pg/g) in serum across quartiles of 23 PCB summary score. This list includes 23 PCBs that were detectable in ≥75% of participants at year 2 of follow-up. Non-detectable values were replaced with 50% of the limit of detectability.

Quartiles of 23 PCB summary score (wet weight concentrations)
P-trend R-square
Q1 Q2 Q3 Q4
Organochlorine pesticides
PCB74 60.2 (45.4, 73.3) 91.6 (73.2, 117.8) 113.6 (72.0, 161.1) 144.1 (114.7, 183.5) <0.001 0.41
PCB87 4.2 (1.9, 6.3) 6.7 (3.9, 8.5) 7.1 (5.0, 10.6) 10.6 (6.3, 15.1) <0.001 0.23
PCB99 49.0 (37.8, 65.5) 83.5 (63.8, 107.9) 96.0 (80.4, 129.2) 154.0 (134.3, 218.6) <0.001 0.57
PCB105 17.1 (11.7, 27.1) 28.4 (20.3, 37.6) 34.6 (20.8, 49.3) 46.5 (32.8, 60.2) <0.001 0.34
PCB118 86.1 (58.1, 125.8) 134.6 (93.5, 172.3) 166.5 (118.8, 225.0) 231.5 (182.9, 282.0) <0.001 0.41
PCB146 19.1 (13.2, 21.3) 32.7 (27.5, 37.0) 48.3 (41.2, 55.8) 83.9 (64.0, 109.6) <0.001 0.64
PCB153 176.1 (146.3, 195.2) 290.1 (261.1, 313.8) 388.9 (353.1, 445.9) 656.4 (552.1, 783.4) <0.001 0.74
PCB156 21.5 (18.3, 27) 32.6 (28.0, 39.5) 50.0 (45.6, 59.8) 77.4 (65.5, 110.3) <0.001 0.65
PCB157 5.6 (4.8, 6.9) 8.4 (7.3, 10.5) 13.4 (10.7, 15.6) 19.0 (15.1, 26.3) <0.001 0.65
PCB138-158 135.4 (106.8, 161.9) 224.3 (203.9, 253.2) 296.5 (255.5, 349.3) 468.9 (388.1, 592.7) <0.001 0.69
PCB167 6.9 (5.5, 8.9) 12.2 (9.4, 13.7) 17.1 (13.5, 19.6) 25.4 (18.5, 33.0) <0.001 0.57
PCB170 41.5 (33.6, 50.3) 67.1 (57.7, 76.7) 96.8 (78.2, 110.0) 163.9 (133.5, 195.7) <0.001 0.76
PCB177 9.1 (7.8, 11.4) 16.3 (15, 19.4) 22.2 (19.7, 24.5) 42.2 (32.9, 53.5) <0.001 0.70
PCB178 6.5 (4.4, 8.8) 11.7 (10.0, 13.0) 16.4 (14.8, 21.3) 32.7 (25.0, 42.6) <0.001 0.70
PCB180 105.8 (83.4, 123.6) 173.9 (143.8, 198.8) 244.1 (224.7, 275.7) 395.1 (347.3, 481.0) <0.001 0.77
PCB183 16.5 (12.4, 19.4) 28.1 (23.2, 32.1) 35.2 (29.5, 40) 62.5 (47.8, 76.2) <0.001 0.73
PCB187 36.0 (29.1, 45.6) 62.7 (53.9, 71.1) 86.4 (75.6, 103.1) 161.5 (124.3, 216.3) <0.001 0.69
PCB194 20.0 (15.2, 25.9) 34.8 (28.2, 43.6) 50.3 (39.9, 61.5) 86.1 (66.7, 104.8) <0.001 0.65
PCB195 5.7 (4.0, 6.8) 9.5 (8.4, 11.4) 13.3 (11.5, 15.2) 23.0 (18.1, 28.3) <0.001 0.75
PCB199 22.8 (15.4, 28.0) 37.4 (29.8, 44.7) 50.6 (44.2, 65.8) 85.7 (69.8, 107.7) <0.001 0.62
PCB196-203 24.6 (19.0, 29.9) 39.1 (34.6, 47.3) 55.0 (47.6, 67) 92.2 (77.2, 105.7) <0.001 0.70
PCB206 13.0 (9.7, 16.0) 20.0 (16.0, 24.0) 28.0 (22.0, 34.0) 41.0 (35.0, 56.0) <0.001 0.48
PCB209 5.0 (3.8, 6.3) 7.2 (5.9, 9.7) 10.9 (8.1, 14.1) 17.7 (13.6, 23.2) <0.001 0.46

Acknowledgements

We would like to thank Dr. David R Jacobs Jr. for his prior work on persistent organic pollutants in the CARDIA study which allowed us to conduct the present analyses. The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by contracts HHSN268201300025C, HHSN268201300026C, HHSN268201300027C, HHSN268201300028C, HHSN268201300029C, and HHSN268200900041C from the National Heart, Lung, and Blood Institute (NHLBI), the Intramural Research Program of the National Institute on Aging (NIA), and an intra-agency agreement between NIA and NHLBI (AG0005). The Young Adult Longitudinal Trends in Atherosclerosis (YALTA) study is supported by R01HL53560. The development of this manuscript was supported by a JPB Environmental Health Fellowship award granted by the JPB Foundation and managed by the Harvard T. H. Chan School of Public Health. All funding sources are from the United States of America.

Footnotes

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103720.

Contributor Information

Jose R. Suarez-Lopez, Email: jrsuarez@ucsd.edu.

Myron D. Gross, Email: gross001@umn.edu.

Duk-Hee Lee, Email: lee_dh@knu.ac.kr.

Transparency document

The following is the transparency document related to this article:

Multimedia component 1
mmc1.zip (3.3MB, zip)

References

  • 1.Suarez-Lopez J.R., Clemesha C.G., Porta M., Gross M.D., Lee D.-H. Organochlorine pesticides and polychlorinated biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up. Environ. Toxicol. Pharmacol. 2018 doi: 10.1016/j.etap.2018.12.018. [DOI] [PubMed] [Google Scholar]
  • 2.Lee D.-H., Steffes M.W., Sjödin A., Jones R.S., Needham L.L., Jacobs D.R. Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study. Environ. Health Perspect. 2010;118:1235–1242. doi: 10.1289/ehp.0901480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Suarez-Lopez J.R., Lee D.-H., Porta M., Steffes M.W., Jacobs D.R., Jr. Persistent organic pollutants in young adults and changes in glucose related metabolism over a 23-year follow-up. Environ. Res. 2015;137:485–494. doi: 10.1016/j.envres.2014.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Sjödin A., Jones R.S., Lapeza C.R., Focant J.-F., McGahee E.E., Patterson D.G. Semiautomated high-throughput extraction and cleanup method for the measurement of polybrominated diphenyl ethers, polybrominated biphenyls, and polychlorinated biphenyls in human serum. Anal. Chem. 2004;76:1921–1927. doi: 10.1021/ac030381+. [DOI] [PubMed] [Google Scholar]
  • 5.Barr J.R., Maggio V.L., Barr D.B., Turner W.E., Sjödin A., Sandau C.D., Pirkle J.L., Needham L.L., Patterson D.G. New high-resolution mass spectrometric approach for the measurement of polychlorinated biphenyls and organochlorine pesticides in human serum. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2003;794:137–148. doi: 10.1016/s1570-0232(03)00451-3. http://www.ncbi.nlm.nih.gov/pubmed/12888206 (Accessed 25 April 2013) [DOI] [PubMed] [Google Scholar]
  • 6.Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972;18:499–502. http://www.ncbi.nlm.nih.gov/pubmed/4337382 (Accessed 30 May 2013) [PubMed] [Google Scholar]
  • 7.Porta M., Puigdomènech E., Ballester F., Selva J., Ribas-Fitó N., Llop S., López T. Monitoring concentrations of persistent organic pollutants in the general population: the international experience. Environ. Int. 2008;34:546–561. doi: 10.1016/j.envint.2007.10.004. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia component 1
mmc1.zip (3.3MB, zip)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES