Abstract
心肌凋亡、心脏肥大、心肌纤维化和心房电重构等病理过程参与了绝大部分心脏疾病的发生和发展,阐明其中病理机制有助于心脏疾病的诊断和治疗。近年研究发现,微小RNA-21(miR-21)作为一类新型内源性调节因子,具有抑制心肌细胞凋亡、改善高血压和心脏肥大、促进心肌纤维化进展、促进心房电重构等作用。本文就miR-21在心脏疾病中的作用和机制研究进展进行综述,并初步探讨miRNA作为心脏疾病临床诊断标志物和治疗靶点的应用前景。
Abstract
Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.
Keywords: MicroRNAs; Gene expression; Cardiomegaly; Myocytes, cardiac; Apoptosis; Heart diseases/therapy; Heart diseases/diagnosis; Review
心肌凋亡、心脏肥大、心肌纤维化和心房电重构等病理过程参与了绝大部分心脏疾病的发生和发展,阐明上述病理过程的机制有助于心脏疾病的诊断和治疗 [ 1- 3] 。微小RNA(miRNA,miR)是一类长度为20~23个核糖核苷酸的单链小分子RNA,作为基因的内源性调节因子参与心脏的发育、衰老和心脏疾病过程 [ 4- 6] 。人miR-21基因位于17号染色体q23.2区域,位于跨膜蛋白49(TMEM49)基因的第10个内含子区域,且与其他miRNA不同,其拥有独立的启动子区域 [ 7] 。既往研究发现,调控miR-21转录的上游转录因子主要有激活蛋白1(activator protein 1,AP-1)、缺氧诱导因子1α(hypoxia-inducible factor 1α,HIF-1α)、信号转导及转录激活因子3等 [ 8- 10] 。这些转录因子在心血管疾病的发生和发展中均异常表达,提示miR-21在心血管疾病的发生和发展中可能起着重要作用。本文总结了miR-21在心肌细胞凋亡、心脏肥大、心肌纤维化和心房电重构中的研究进展,并在现有研究基础上探讨了miRNA作为心脏疾病临床诊断标志物和治疗靶点的应用前景。
1 miR-21抑制心肌细胞凋亡
心肌细胞凋亡在缺血性心肌病的发病过程中发挥着关键作用 [ 11] 。早在2009年,Dong等 [ 12] 研究发现,大鼠急性心肌梗死后6 h,心肌梗死区域miR-21表达下调,但在梗死边缘区域miR-21表达上调;进一步通过上调大鼠心脏miR-21水平发现,急性心肌梗死后24 h,心肌梗死面积减少29%,并且在急性心肌梗死后2周时左心室容积减小,证实miR-21具有心肌梗死后心肌保护作用。研究显示,程序性细胞死亡因子(programmed cell death 4, PDCD4)是miR-21的经典靶点,miR-21抑制PDCD4的表达,通过PDCD4/AP-1通路抑制心肌细胞缺血、缺氧后的凋亡,在心肌细胞氧化应激损伤、缺血再灌注损伤中起保护作用 [ 13- 14] 。另有研究发现,miR-21可以抑制磷酸酯酶与张力蛋白同源物(phosphatase and tensin homolog deleted on chromosome ten,PTEN)的表达,通过抑制蛋白激酶(Akt)的活性和增加心肌细胞的存活,减少心肌细胞缺血、缺氧后的凋亡,减轻心肌再灌注损伤 [ 9, 15- 18] 。Liu等 [ 9] 研究发现,HIF-1α/miR-21组成的正反馈通路也可以有效帮助心肌细胞适应缺氧,减少心肌细胞凋亡,提示miR-21在缺氧介导的心肌保护机制中发挥关键作用。此外,Akt/mTOR是与细胞自噬、凋亡等均有重要关联的经典信号通路 [ 19- 20] 。Huang等 [ 21] 发现心肌在缺血再灌注损伤时,miR-21表达下调,而miR-21过表达可以通过激活Akt/mTOR途径,抑制心肌细胞自噬活性和细胞凋亡。总之,miR-21可以通过多种调节机制发挥抑制心肌细胞凋亡的效应,是针对心肌修复的一个潜在治疗靶点。
2 miR-21改善高血压和心脏肥大效应
心脏肥大多由高血压、心脏瓣膜疾病等心血管疾病导致,是心力衰竭前期的代偿表现。Kontaraki等 [ 22] 测定了原发性高血压患者和健康个体外周血单核细胞的miRNA水平,发现高血压患者的miR-21表达水平升高(2.75±0.15与1.82±0.20, P < 0.01),且与左心室质量指数成正比( r=0.498, P < 0.01)。Li等 [ 23] 研究揭示了miR-21通过促进线粒体翻译,在高血压及其所致的心脏肥大中发挥积极作用。该研究发现线粒体DNA编码细胞色素b(mtDNA-encoded cytochrome b,mt-Cytb)在自发性高血压大鼠心脏中表达减少,miR-21可以直接靶向上调线粒体中的mt-Cytb翻译;将miR-21过表达腺病毒注射至自发性高血压大鼠体内,发现大鼠高血压和心脏肥大较前明显改善。另一项研究显示,miR-21介导的降血压和改善心脏肥大效应是通过抑制动脉中肾上腺α2B-肾上腺素能受体从而调节血管平滑肌细胞的表型转化而实现的 [ 24] 。
3 miR-21促进心肌纤维化进展
心肌纤维化是缺血性心肌病、心脏肥大和心力衰竭等心脏病理状态的主要变化,主要表现为细胞外基质过度沉积。心肌成纤维细胞增殖和成纤维细胞向肌成纤维细胞转化是心肌纤维化的关键机制。Thum等 [ 25] 发现,miR-21通过抑制Spry1表达激活ERK/MAPK信号通路,从而促进心肌成纤维细胞活化和生长因子分泌。进一步的小鼠体内实验也提示,利用antagomir体内沉默miR-21可以抑制心脏ERK/MAPK通路活化,抑制心肌纤维化和心脏功能障碍。Yuan等 [ 26] 实验显示miR-21通过TGF-β1/Smad7信号通路在心肌梗死后的心肌成纤维细胞活化和心肌纤维化中起关键作用;García等 [ 27] 则在细胞水平揭示了miR-21在心肌纤维化过程中的上调机制:TGF-β1依赖的SMAD与DROSHA蛋白相互作用促进pri-miR-21加工成pre-miR-21。Lorenzen等 [ 8] 体外研究揭示了血管紧张素Ⅱ刺激下AP-1促进miR-21的转录过程,靶向降解PTEN和SMAD7,导致心肌成纤维细胞活化进而促进心肌纤维化进展。Notch/Jagged1信号通路在纤维化中发挥了重要作用。Zhou等 [ 28] 揭示了miR-21能够靶向降解Jagged1蛋白,促进心肌成纤维细胞增殖和成纤维细胞至肌成纤维细胞转化。然而Patrick等 [ 29] 发现,在对照组、压力负荷模型组和血管紧张素Ⅱ诱导心脏肥大模型组中,各组经过处理的miR-21敲除小鼠和野生型小鼠均展现了相似的心脏结构和功能表型。同时,他们利用抗miR-21寡核苷酸注射野生型小鼠,发挥体内拮抗miR-21效应,发现抑制miR-21表达未能阻止压力负荷和血管紧张素Ⅱ诱导的心肌纤维化效应。Thum等 [ 25] 和Patrick等 [ 29] 两者截然相反的体内实验结果可能与不同的处理方法、个体偏差等有关,因此需要更多的动物实验研究来验证miR-21的体内效应。总之,miR-21虽然在细胞水平被证实是一个促纤维化因子,然而在动物体内亟待进一步探索和验证。
4 miR-21促进心房电重构
心房电重构是心房颤动的主要特征,其中L-型钙离子电流密度减弱是电重构的标志。研究发现,与窦性心律患者比较,慢性心房颤动患者心肌内miR-21水平升高,提示miR-21可能在心房颤动中起促进作用。进一步研究发现,miR-21可以通过下调钙离子通道L-型电压依赖钙离子通道α1C亚基和L-型电压依赖型钙通道β减弱心房肌钙离子电流密度,从而促进心房电重构和心房颤动的发生和发展 [ 30] 。
目前研究者们仅发现miR-21可以下调钙离子通道蛋白表达,从而促进心房电重构。其他心房电重构机制,如钠离子通道蛋白、缝隙连接蛋白和兴奋-收缩偶联机制等,是否能被miR-21调控仍是一个未知领域。
5 miR-21的临床应用前景
5.1 miR-21作为疾病诊断和预后判断的生物学标志物
大量研究证实,miRNA广泛存在于人体心脏组织及体液中,且不同疾病状态下miRNA的表达谱不同 [ 31] 。由于心脏组织不易获取,体液中的miRNA检测为临床及科研工作者诊断疾病和判断预后提供了全新思路。Zhang等 [ 32] 的研究发现,循环miR-21可以作为心力衰竭诊断和预后的指标。他们从80例心力衰竭患者和40名健康个体中的外周静脉和冠状窦获得血清,分别测量其中的miR-21和脑利钠肽水平,发现心力衰竭患者的血清外周静脉和冠状窦的miRNA-21水平均高于健康个体,与射血分数和脑利钠肽水平相关,且与患者预后相关。Villar等 [ 33] 的研究则提示二尖瓣狭窄患者有着更高的血浆miR-21水平,且与心肌纤维化程度相关,强调了循环miR-21作为心肌纤维化的生物标志物的价值。同时还有多项研究评估了miR-21在心脏疾病中的诊断价值 [ 34- 36] 。然而这些研究都有一定的局限性:①样本量较小。②研究手段缺乏统一标准。首先,样本取自血浆、血细胞或心脏组织等多种来源;其次,收集量、收集管、抗凝血剂或组织固定剂、保存方法、涉及各种定量方法(如微阵列、定量实时聚合酶链、深度测序方法)均不相同;最后,数据分析的统计方法对最终结果也有很大影响。③目前研究仍局限于疾病与外周血miR-21水平而非组织miR-21含量的相关性。
5.2 miR-21作为临床治疗的靶点
基于miRNA的临床价值研究仍处于细胞和动物模型阶段。目前靶向miRNA的手段主要是miRNA的类似物或拮抗剂,病毒介导的pre-miRNA或者sh-pre-miRNA,以及干细胞分泌的外泌体或人工包装miRNA的外泌体。如心肌梗死模型大鼠在注射腺病毒介导了miR-21拮抗剂后,大鼠的心脏功能障碍和心肌纤维得到了部分改善 [ 28] 。间充质干细胞分泌的外泌体具有心脏保护作用,可以改善心肌梗死模型心肌缺血和心肌梗死面积,其中miR-21发挥了关键作用 [ 37] 。如在氧化应激条件下,心脏祖细胞分泌的外泌体中miR-21高度表达,外泌体可以通过miR-21/PDCD4途径保护心肌细胞免受氧化应激相关的细胞凋亡损害,因此心脏祖细胞成为目前用于心脏保护和修复最有希望的干细胞类型之一 [ 38- 39] 。Gu等 [ 40] 研究也证实,miR-21可以通过外泌体途径抑制急性心肌梗死后心肌细胞凋亡。
以上手段都是通过将病变细胞或者组织中异常表达的miRNA恢复至正常水平,即沉默过表达的miRNA或替代低表达的miRNA。然而这些治疗方法存在以下问题:①高通量测序发现,病理状态下的细胞或组织存在大量的miRNA水平改变,即通过miRNA调控网络失衡导致疾病的发生,修复单一或数种miRNA的表达水平,并不一定达到理想的治疗水平;②靶向miRNA的治疗方法缺乏细胞或组织特异性,它可能干预正常组织中的miRNA表达,从而诱发医源性疾病。因此,阐明病理状态下miRNA网络,寻找miRNA精准治疗途径是未来miRNA靶向治疗的研究方向。
总之,miRNA在真正应用于临床实践前还需要大量研究,但其仍不失为一种具有巨大潜力的新型生物学标志物和治疗靶点。
Funding Statement
浙江省医药卫生科技计划(2018KY047)
References
- 1.LI C J, CHEN C S, YIANG G T, et al. Advanced evolution of pathogenesis concepts in cardiomyopathies[J/OL]. J Clin Med, 2019, 8(4): pii: E520. [DOI] [PMC free article] [PubMed]
- 2.MARTINEZ S R, GAY M S, ZHANG L. Epigenetic mechanisms in heart development and disease. Drug Discov Today. 2015;20(7):799–811. doi: 10.1016/j.drudis.2014.12.018. [MARTINEZ S R, GAY M S, ZHANG L. Epigenetic mechanisms in heart development and disease[J]. Drug Discov Today, 2015, 20(7):799-811.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.WANG F, JIA J, RODRIGUES B. Autophagy, metabolic disease, and pathogenesis of heart dysfunction. Can J Cardiol. 2017;33(7):850–859. doi: 10.1016/j.cjca.2017.01.002. [WANG F, JIA J, RODRIGUES B. Autophagy, metabolic disease, and pathogenesis of heart dysfunction[J]. Can J Cardiol, 2017, 33(7):850-859.] [DOI] [PubMed] [Google Scholar]
- 4.CHISTIAKOV D A, OREKHOV A N, BOBRYSHEV Y V. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction) J Mol Cell Cardiol. 2016;94:107–121. doi: 10.1016/j.yjmcc.2016.03.015. [CHISTIAKOV D A, OREKHOV A N, BOBRYSHEV Y V. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction)[J]. J Mol Cell Cardiol, 2016, 94:107-121.] [DOI] [PubMed] [Google Scholar]
- 5.VACANTE F, DENBY L, SLUIMER J C, et al. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vascul Pharmacol. 2019;112:24–30. doi: 10.1016/j.vph.2018.11.006. [VACANTE F, DENBY L, SLUIMER J C, et al. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease[J]. Vascul Pharmacol, 2019, 112:24-30.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.GANDHI S, RUEHLE F, STOLL M. Evolutionary patterns of non-coding RNA in cardiovascular biology[J/OL]. Noncoding RNA, 2019, 5(1): pii: E15. [DOI] [PMC free article] [PubMed]
- 7.CAI X, HAGEDORN C H, CULLEN B R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–1966. doi: 10.1261/rna.7135204. [CAI X, HAGEDORN C H, CULLEN B R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J]. RNA, 2004, 10(12):1957-1966.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.LORENZEN J M, SCHAUERTE C, HVBNER A, et al. Osteopontin is indispensible for AP1-mediated angiotensin Ⅱ-related miR-21 transcription during cardiac fibrosis. Eur Heart J. 2015;36(32):2184–2196. doi: 10.1093/eurheartj/ehv109. [LORENZEN J M, SCHAUERTE C, HVBNER A, et al. Osteopontin is indispensible for AP1-mediated angiotensin Ⅱ-related miR-21 transcription during cardiac fibrosis[J]. Eur Heart J, 2015, 36(32):2184-2196.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.LIU Y, NIE H, ZHANG K, et al. A feedback regulatory loop between HIF-1α and miR-21 in response to hypoxia in cardiomyocytes. FEBS Lett. 2014;588(17):3137–3146. doi: 10.1016/j.febslet.2014.05.067. [LIU Y, NIE H, ZHANG K, et al. A feedback regulatory loop between HIF-1α and miR-21 in response to hypoxia in cardiomyocytes[J]. FEBS Lett, 2014, 588(17):3137-3146.] [DOI] [PubMed] [Google Scholar]
- 10.GRYSHKOVA V, FLEMING A, MCGHAN P, et al. miR-21-5p as a potential biomarker of inflammatory infiltration in the heart upon acute drug-induced cardiac injury in rats. Toxicol Lett. 2018;286:31–38. doi: 10.1016/j.toxlet.2018.01.013. [GRYSHKOVA V, FLEMING A, MCGHAN P, et al. miR-21-5p as a potential biomarker of inflammatory infiltration in the heart upon acute drug-induced cardiac injury in rats[J]. Toxicol Lett, 2018, 286:31-38.] [DOI] [PubMed] [Google Scholar]
- 11.TERINGOVA E, TOUSEK P. Apoptosis in ischemic heart disease. J Transl Med. 2017;15:87. doi: 10.1186/s12967-017-1191-y. [TERINGOVA E, TOUSEK P. Apoptosis in ischemic heart disease[J]. J Transl Med, 2017, 15:87.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.DONG S, CHENG Y, YANG J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009;284(43):29514–29525. doi: 10.1074/jbc.M109.027896. [DONG S, CHENG Y, YANG J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction[J]. J Biol Chem, 2009, 284(43):29514-29525.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.CHENG Y, LIU X, ZHANG S, et al. MicroRNA-21 protects against the H 2O 2-induced injury on cardiac myocytes via its target gene PDCD4 . J Mol Cell Cardiol. 2009;47(1):5–14. doi: 10.1016/j.yjmcc.2009.01.008. [CHENG Y, LIU X, ZHANG S, et al. MicroRNA-21 protects against the H 2O 2-induced injury on cardiac myocytes via its target gene PDCD4[J]. J Mol Cell Cardiol, 2009, 47(1):5-14. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.CHENG Y, ZHU P, YANG J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res. 2010;87(3):431–439. doi: 10.1093/cvr/cvq082. [CHENG Y, ZHU P, YANG J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4[J]. Cardiovasc Res, 2010, 87(3):431-439.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.SCHWARTZBAUER G, ROBBINS J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem. 2001;276(38):35786–35793. doi: 10.1074/jbc.M102479200. [SCHWARTZBAUER G, ROBBINS J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival[J]. J Biol Chem, 2001, 276(38):35786-35793.] [DOI] [PubMed] [Google Scholar]
- 16.CAI Z, SEMENZA G L. PTEN activity is modulated during ischemia and reperfusion:involvement in the induction and decay of preconditioning. Circ Res. 2005;97(12):1351–1359. doi: 10.1161/01.RES.0000195656.52760.30. [CAI Z, SEMENZA G L. PTEN activity is modulated during ischemia and reperfusion:involvement in the induction and decay of preconditioning[J]. Circ Res, 2005, 97(12):1351-1359.] [DOI] [PubMed] [Google Scholar]
- 17.OUDIT G Y, SUN H, KERFANT B G, et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol. 2004;37(2):449–471. doi: 10.1016/j.yjmcc.2004.05.015. [OUDIT G Y, SUN H, KERFANT B G, et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease[J]. J Mol Cell Cardiol, 2004, 37(2):449-471.] [DOI] [PubMed] [Google Scholar]
- 18.RANA A, GOYAL N, AHLAWAT A, et al. Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders. Perfusion. 2015;30(2):94–105. doi: 10.1177/0267659114536760. [RANA A, GOYAL N, AHLAWAT A, et al. Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders[J]. Perfusion, 2015, 30(2):94-105.] [DOI] [PubMed] [Google Scholar]
- 19.JUNG C H, RO S H, CAO J, et al. mTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287–1295. doi: 10.1016/j.febslet.2010.01.017. [JUNG C H, RO S H, CAO J, et al. mTOR regulation of autophagy[J]. FEBS Lett, 2010, 584(7):1287-1295.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.LOPICCOLO J, BLUMENTHAL G M, BERNSTEIN W B, et al. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations. Drug Resist Updat. 2008;11(1-2):32–50. doi: 10.1016/j.drup.2007.11.003. [LOPICCOLO J, BLUMENTHAL G M, BERNSTEIN W B, et al. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations[J]. Drug Resist Updat, 2008, 11(1-2):32-50.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.HUANG Z, WU S, KONG F, et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med. 2017;21(3):467–474. doi: 10.1111/jcmm.2017.21.issue-3. [HUANG Z, WU S, KONG F, et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway[J]. J Cell Mol Med, 2017, 21(3):467-474.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.KONTARAKI J E, MARKETOU M E, PARTHENAKIS F I, et al. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension. J Am Soc Hypertens. 2015;9(10):802–810. doi: 10.1016/j.jash.2015.07.013. [KONTARAKI J E, MARKETOU M E, PARTHENAKIS F I, et al. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension[J]. J Am Soc Hypertens, 2015, 9(10):802-810.] [DOI] [PubMed] [Google Scholar]
- 23.LI H, ZHANG X, WANG F, et al. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation. 2016;134(10):734–751. doi: 10.1161/CIRCULATIONAHA.116.023926. [LI H, ZHANG X, WANG F, et al. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation[J]. Circulation, 2016, 134(10):734-751.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.WANG F, FANG Q, CHEN C, et al. Recombinant adeno-associated virus-mediated delivery of microRNA-21-3p lowers hypertension. Mol Ther Nucleic Acids. 2018;11:354–366. doi: 10.1016/j.omtn.2017.11.007. [WANG F, FANG Q, CHEN C, et al. Recombinant adeno-associated virus-mediated delivery of microRNA-21-3p lowers hypertension[J]. Mol Ther Nucleic Acids, 2018, 11:354-366.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.THUM T, GROSS C, FIEDLER J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–984. doi: 10.1038/nature07511. [THUM T, GROSS C, FIEDLER J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008, 456(7224):980-984.] [DOI] [PubMed] [Google Scholar]
- 26.YUAN J, CHEN H, GE D, et al. Mir-21 Promotes cardiac fibrosis after myocardial infarction via targeting smad7. Cell Physiol Biochem. 2017;42(6):2207–2219. doi: 10.1159/000479995. [YUAN J, CHEN H, GE D, et al. Mir-21 Promotes cardiac fibrosis after myocardial infarction via targeting smad7[J]. Cell Physiol Biochem, 2017, 42(6):2207-2219.] [DOI] [PubMed] [Google Scholar]
- 27.GARCÍA R, NISTAL J F, MERINO D, et al. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling. Biochim Biophys Acta. 2015;1852(7):1520–1530. doi: 10.1016/j.bbadis.2015.04.006. [GARCÍA R, NISTAL J F, MERINO D, et al. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling[J]. Biochim Biophys Acta, 2015, 1852(7):1520-1530.] [DOI] [PubMed] [Google Scholar]
- 28.ZHOU X L, XU H, LIU Z B, et al. miR-21 promotes cardiac fibroblast-to-myofibroblast trans-formation and myocardial fibrosis by targeting Jagged1. J Cell Mol Med. 2018;22(8):3816–3824. doi: 10.1111/jcmm.2018.22.issue-8. [ZHOU X L, XU H, LIU Z B, et al. miR-21 promotes cardiac fibroblast-to-myofibroblast trans-formation and myocardial fibrosis by targeting Jagged1[J]. J Cell Mol Med, 2018, 22(8):3816-3824.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.PATRICK D M, MONTGOMERY R L, QI X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 2010;120(11):3912–3916. doi: 10.1172/JCI43604. [PATRICK D M, MONTGOMERY R L, QI X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice[J]. J Clin Invest, 2010, 120(11):3912-3916.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.BARANA A, MATAMOROS M, DOLZ-GAITÓN P, et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current. Circ Arrhythm Electrophysiol. 2014;7(5):861–868. doi: 10.1161/CIRCEP.114.001709. [BARANA A, MATAMOROS M, DOLZ-GAITÓN P, et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current[J]. Circ Arrhythm Electrophysiol, 2014, 7(5):861-868.] [DOI] [PubMed] [Google Scholar]
- 31.VIERECK J, THUM T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res. 2017;120(2):381–399. doi: 10.1161/CIRCRESAHA.116.308434. [VIERECK J, THUM T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury[J]. Circ Res, 2017, 120(2):381-399.] [DOI] [PubMed] [Google Scholar]
- 32.ZHANG J, XING Q, ZHOU X, et al. Circulating miRNA-21 is a promising biomarker for heart failure. Mol Med Rep. 2017;16(5):7766–7774. doi: 10.3892/mmr.2017.7575. [ZHANG J, XING Q, ZHOU X, et al. Circulating miRNA-21 is a promising biomarker for heart failure[J]. Mol Med Rep, 2017, 16(5):7766-7774.] [DOI] [PubMed] [Google Scholar]
- 33.VILLAR A V, GARCÍA R, MERINO D, et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol. 2013;167(6):2875–2881. doi: 10.1016/j.ijcard.2012.07.021. [VILLAR A V, GARCÍA R, MERINO D, et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients[J]. Int J Cardiol, 2013, 167(6):2875-2881.] [DOI] [PubMed] [Google Scholar]
- 34.FANG L, ELLIMS A H, MOORE X L, et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med. 2015;13:314. doi: 10.1186/s12967-015-0672-0. [FANG L, ELLIMS A H, MOORE X L, et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy[J]. J Transl Med, 2015, 13:314.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.WANG F, LONG G, ZHAO C, et al. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction[J/OL]. PLoS One, 2014, 9(9): e105734. [DOI] [PMC free article] [PubMed]
- 36.NAIR N, GUPTA S, COLLIER I X, et al. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF? Int J Cardiol. 2014;175(3):395–399. doi: 10.1016/j.ijcard.2014.06.027. [NAIR N, GUPTA S, COLLIER I X, et al. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF?[J]. Int J Cardiol, 2014, 175(3):395-399.] [DOI] [PubMed] [Google Scholar]
- 37.LUTHER K M, HAAR L, MCGUINNESS M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol. 2018;119:125–137. doi: 10.1016/j.yjmcc.2018.04.012. [LUTHER K M, HAAR L, MCGUINNESS M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119:125-137.] [DOI] [PubMed] [Google Scholar]
- 38.CAI C L, MOLKENTIN J D. The elusive progenitor cell in cardiac regeneration:slip slidin' away. Circ Res. 2017;120(2):400–406. doi: 10.1161/CIRCRESAHA.116.309710. [CAI C L, MOLKENTIN J D. The elusive progenitor cell in cardiac regeneration:slip slidin' away[J]. Circ Res, 2017, 120(2):400-406.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.XIAO J, PAN Y, LI X H, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J/OL]. Cell Death Dis, 2016, 7(6): e2277. [DOI] [PMC free article] [PubMed]
- 40.GU H, LIU Z, LI Y, et al. Serum-derived extracellular vesicles protect against acute myocardial infarction by regulating miR-21/PDCD4 signaling pathway. Front Physiol. 2018;9:348. doi: 10.3389/fphys.2018.00348. [GU H, LIU Z, LI Y, et al. Serum-derived extracellular vesicles protect against acute myocardial infarction by regulating miR-21/PDCD4 signaling pathway[J]. Front Physiol, 2018, 9:348.] [DOI] [PMC free article] [PubMed] [Google Scholar]